//===- llvm/Analysis/DominanceFrontier.h - Dominator Frontiers --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the DominanceFrontier class, which calculate and holds the // dominance frontier for a function. // // This should be considered deprecated, don't add any more uses of this data // structure. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER_H #define LLVM_ANALYSIS_DOMINANCEFRONTIER_H #include "llvm/ADT/GraphTraits.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/GenericDomTree.h" #include #include #include #include namespace llvm { class Function; class raw_ostream; //===----------------------------------------------------------------------===// /// DominanceFrontierBase - Common base class for computing forward and inverse /// dominance frontiers for a function. /// template class DominanceFrontierBase { public: using DomSetType = std::set; // Dom set for a bb using DomSetMapType = std::map; // Dom set map protected: using BlockTraits = GraphTraits; DomSetMapType Frontiers; // Postdominators can have multiple roots. SmallVector Roots; static constexpr bool IsPostDominators = IsPostDom; public: DominanceFrontierBase() = default; /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). const SmallVectorImpl &getRoots() const { return Roots; } BlockT *getRoot() const { assert(Roots.size() == 1 && "Should always have entry node!"); return Roots[0]; } /// isPostDominator - Returns true if analysis based of postdoms bool isPostDominator() const { return IsPostDominators; } void releaseMemory() { Frontiers.clear(); } // Accessor interface: using iterator = typename DomSetMapType::iterator; using const_iterator = typename DomSetMapType::const_iterator; iterator begin() { return Frontiers.begin(); } const_iterator begin() const { return Frontiers.begin(); } iterator end() { return Frontiers.end(); } const_iterator end() const { return Frontiers.end(); } iterator find(BlockT *B) { return Frontiers.find(B); } const_iterator find(BlockT *B) const { return Frontiers.find(B); } iterator addBasicBlock(BlockT *BB, const DomSetType &frontier) { assert(find(BB) == end() && "Block already in DominanceFrontier!"); return Frontiers.insert(std::make_pair(BB, frontier)).first; } /// removeBlock - Remove basic block BB's frontier. void removeBlock(BlockT *BB); void addToFrontier(iterator I, BlockT *Node); void removeFromFrontier(iterator I, BlockT *Node); /// compareDomSet - Return false if two domsets match. Otherwise /// return true; bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const; /// compare - Return true if the other dominance frontier base matches /// this dominance frontier base. Otherwise return false. bool compare(DominanceFrontierBase &Other) const; /// print - Convert to human readable form /// void print(raw_ostream &OS) const; /// dump - Dump the dominance frontier to dbgs(). #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void dump() const; #endif }; //===------------------------------------- /// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is /// used to compute a forward dominator frontiers. /// template class ForwardDominanceFrontierBase : public DominanceFrontierBase { private: using BlockTraits = GraphTraits; public: using DomTreeT = DomTreeBase; using DomTreeNodeT = DomTreeNodeBase; using DomSetType = typename DominanceFrontierBase::DomSetType; void analyze(DomTreeT &DT) { assert(DT.root_size() == 1 && "Only one entry block for forward domfronts!"); this->Roots = {DT.getRoot()}; calculate(DT, DT[this->Roots[0]]); } const DomSetType &calculate(const DomTreeT &DT, const DomTreeNodeT *Node); }; class DominanceFrontier : public ForwardDominanceFrontierBase { public: using DomTreeT = DomTreeBase; using DomTreeNodeT = DomTreeNodeBase; using DomSetType = DominanceFrontierBase::DomSetType; using iterator = DominanceFrontierBase::iterator; using const_iterator = DominanceFrontierBase::const_iterator; /// Handle invalidation explicitly. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &); }; class DominanceFrontierWrapperPass : public FunctionPass { DominanceFrontier DF; public: static char ID; // Pass ID, replacement for typeid DominanceFrontierWrapperPass(); DominanceFrontier &getDominanceFrontier() { return DF; } const DominanceFrontier &getDominanceFrontier() const { return DF; } void releaseMemory() override; bool runOnFunction(Function &) override; void getAnalysisUsage(AnalysisUsage &AU) const override; void print(raw_ostream &OS, const Module * = nullptr) const override; void dump() const; }; extern template class DominanceFrontierBase; extern template class DominanceFrontierBase; extern template class ForwardDominanceFrontierBase; /// Analysis pass which computes a \c DominanceFrontier. class DominanceFrontierAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static AnalysisKey Key; public: /// Provide the result type for this analysis pass. using Result = DominanceFrontier; /// Run the analysis pass over a function and produce a dominator tree. DominanceFrontier run(Function &F, FunctionAnalysisManager &AM); }; /// Printer pass for the \c DominanceFrontier. class DominanceFrontierPrinterPass : public PassInfoMixin { raw_ostream &OS; public: explicit DominanceFrontierPrinterPass(raw_ostream &OS); PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; } // end namespace llvm #endif // LLVM_ANALYSIS_DOMINANCEFRONTIER_H