llvm-for-llvmta/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.h

961 lines
31 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#include "SIDefines.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/Support/Alignment.h"
struct amd_kernel_code_t;
namespace llvm {
struct Align;
class Argument;
class Function;
class GCNSubtarget;
class GlobalValue;
class MCRegisterClass;
class MCRegisterInfo;
class MCSubtargetInfo;
class StringRef;
class Triple;
namespace amdhsa {
struct kernel_descriptor_t;
}
namespace AMDGPU {
struct IsaVersion;
/// \returns HSA OS ABI Version identification.
Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI);
/// \returns True if HSA OS ABI Version identification is 2,
/// false otherwise.
bool isHsaAbiVersion2(const MCSubtargetInfo *STI);
/// \returns True if HSA OS ABI Version identification is 3,
/// false otherwise.
bool isHsaAbiVersion3(const MCSubtargetInfo *STI);
struct GcnBufferFormatInfo {
unsigned Format;
unsigned BitsPerComp;
unsigned NumComponents;
unsigned NumFormat;
unsigned DataFormat;
};
#define GET_MIMGBaseOpcode_DECL
#define GET_MIMGDim_DECL
#define GET_MIMGEncoding_DECL
#define GET_MIMGLZMapping_DECL
#define GET_MIMGMIPMapping_DECL
#include "AMDGPUGenSearchableTables.inc"
namespace IsaInfo {
enum {
// The closed Vulkan driver sets 96, which limits the wave count to 8 but
// doesn't spill SGPRs as much as when 80 is set.
FIXED_NUM_SGPRS_FOR_INIT_BUG = 96,
TRAP_NUM_SGPRS = 16
};
enum class TargetIDSetting {
Unsupported,
Any,
Off,
On
};
class AMDGPUTargetID {
private:
TargetIDSetting XnackSetting;
TargetIDSetting SramEccSetting;
public:
explicit AMDGPUTargetID(const MCSubtargetInfo &STI);
~AMDGPUTargetID() = default;
/// \return True if the current xnack setting is not "Unsupported".
bool isXnackSupported() const {
return XnackSetting != TargetIDSetting::Unsupported;
}
/// \returns True if the current xnack setting is "On" or "Any".
bool isXnackOnOrAny() const {
return XnackSetting == TargetIDSetting::On ||
XnackSetting == TargetIDSetting::Any;
}
/// \returns True if current xnack setting is "On" or "Off",
/// false otherwise.
bool isXnackOnOrOff() const {
return getXnackSetting() == TargetIDSetting::On ||
getXnackSetting() == TargetIDSetting::Off;
}
/// \returns The current xnack TargetIDSetting, possible options are
/// "Unsupported", "Any", "Off", and "On".
TargetIDSetting getXnackSetting() const {
return XnackSetting;
}
/// Sets xnack setting to \p NewXnackSetting.
void setXnackSetting(TargetIDSetting NewXnackSetting) {
XnackSetting = NewXnackSetting;
}
/// \return True if the current sramecc setting is not "Unsupported".
bool isSramEccSupported() const {
return SramEccSetting != TargetIDSetting::Unsupported;
}
/// \returns True if the current sramecc setting is "On" or "Any".
bool isSramEccOnOrAny() const {
return SramEccSetting == TargetIDSetting::On ||
SramEccSetting == TargetIDSetting::Any;
}
/// \returns True if current sramecc setting is "On" or "Off",
/// false otherwise.
bool isSramEccOnOrOff() const {
return getSramEccSetting() == TargetIDSetting::On ||
getSramEccSetting() == TargetIDSetting::Off;
}
/// \returns The current sramecc TargetIDSetting, possible options are
/// "Unsupported", "Any", "Off", and "On".
TargetIDSetting getSramEccSetting() const {
return SramEccSetting;
}
/// Sets sramecc setting to \p NewSramEccSetting.
void setSramEccSetting(TargetIDSetting NewSramEccSetting) {
SramEccSetting = NewSramEccSetting;
}
void setTargetIDFromFeaturesString(StringRef FS);
void setTargetIDFromTargetIDStream(StringRef TargetID);
};
/// Streams isa version string for given subtarget \p STI into \p Stream.
void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream);
/// \returns Wavefront size for given subtarget \p STI.
unsigned getWavefrontSize(const MCSubtargetInfo *STI);
/// \returns Local memory size in bytes for given subtarget \p STI.
unsigned getLocalMemorySize(const MCSubtargetInfo *STI);
/// \returns Number of execution units per compute unit for given subtarget \p
/// STI.
unsigned getEUsPerCU(const MCSubtargetInfo *STI);
/// \returns Maximum number of work groups per compute unit for given subtarget
/// \p STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns Minimum number of waves per execution unit for given subtarget \p
/// STI.
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI);
/// \returns Maximum number of waves per execution unit for given subtarget \p
/// STI without any kind of limitation.
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI);
/// \returns Number of waves per execution unit required to support the given \p
/// FlatWorkGroupSize.
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns Minimum flat work group size for given subtarget \p STI.
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI);
/// \returns Maximum flat work group size for given subtarget \p STI.
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI);
/// \returns Number of waves per work group for given subtarget \p STI and
/// \p FlatWorkGroupSize.
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns SGPR allocation granularity for given subtarget \p STI.
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI);
/// \returns SGPR encoding granularity for given subtarget \p STI.
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI);
/// \returns Total number of SGPRs for given subtarget \p STI.
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI);
/// \returns Addressable number of SGPRs for given subtarget \p STI.
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI);
/// \returns Minimum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Maximum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
bool Addressable);
/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed, bool XNACKUsed);
/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used. XNACK is inferred from
/// \p STI.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed);
/// \returns Number of SGPR blocks needed for given subtarget \p STI when
/// \p NumSGPRs are used. \p NumSGPRs should already include any special
/// register counts.
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs);
/// \returns VGPR allocation granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
Optional<bool> EnableWavefrontSize32 = None);
/// \returns VGPR encoding granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
Optional<bool> EnableWavefrontSize32 = None);
/// \returns Total number of VGPRs for given subtarget \p STI.
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI);
/// \returns Addressable number of VGPRs for given subtarget \p STI.
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI);
/// \returns Minimum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Maximum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Number of VGPR blocks needed for given subtarget \p STI when
/// \p NumVGPRs are used.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match the
/// ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs,
Optional<bool> EnableWavefrontSize32 = None);
} // end namespace IsaInfo
LLVM_READONLY
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx);
LLVM_READONLY
int getSOPPWithRelaxation(uint16_t Opcode);
struct MIMGBaseOpcodeInfo {
MIMGBaseOpcode BaseOpcode;
bool Store;
bool Atomic;
bool AtomicX2;
bool Sampler;
bool Gather4;
uint8_t NumExtraArgs;
bool Gradients;
bool G16;
bool Coordinates;
bool LodOrClampOrMip;
bool HasD16;
};
LLVM_READONLY
const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode);
struct MIMGDimInfo {
MIMGDim Dim;
uint8_t NumCoords;
uint8_t NumGradients;
bool DA;
uint8_t Encoding;
const char *AsmSuffix;
};
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfo(unsigned DimEnum);
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByEncoding(uint8_t DimEnc);
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByAsmSuffix(StringRef AsmSuffix);
struct MIMGLZMappingInfo {
MIMGBaseOpcode L;
MIMGBaseOpcode LZ;
};
struct MIMGMIPMappingInfo {
MIMGBaseOpcode MIP;
MIMGBaseOpcode NONMIP;
};
struct MIMGG16MappingInfo {
MIMGBaseOpcode G;
MIMGBaseOpcode G16;
};
LLVM_READONLY
const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L);
LLVM_READONLY
const MIMGMIPMappingInfo *getMIMGMIPMappingInfo(unsigned MIP);
LLVM_READONLY
const MIMGG16MappingInfo *getMIMGG16MappingInfo(unsigned G);
LLVM_READONLY
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
unsigned VDataDwords, unsigned VAddrDwords);
LLVM_READONLY
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels);
struct MIMGInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t MIMGEncoding;
uint8_t VDataDwords;
uint8_t VAddrDwords;
};
LLVM_READONLY
const MIMGInfo *getMIMGInfo(unsigned Opc);
LLVM_READONLY
int getMTBUFBaseOpcode(unsigned Opc);
LLVM_READONLY
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements);
LLVM_READONLY
int getMTBUFElements(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasVAddr(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasSrsrc(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasSoffset(unsigned Opc);
LLVM_READONLY
int getMUBUFBaseOpcode(unsigned Opc);
LLVM_READONLY
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements);
LLVM_READONLY
int getMUBUFElements(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasVAddr(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasSrsrc(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasSoffset(unsigned Opc);
LLVM_READONLY
bool getSMEMIsBuffer(unsigned Opc);
LLVM_READONLY
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
uint8_t NumComponents,
uint8_t NumFormat,
const MCSubtargetInfo &STI);
LLVM_READONLY
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
const MCSubtargetInfo &STI);
LLVM_READONLY
int getMCOpcode(uint16_t Opcode, unsigned Gen);
void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
const MCSubtargetInfo *STI);
amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
const MCSubtargetInfo *STI);
bool isGroupSegment(const GlobalValue *GV);
bool isGlobalSegment(const GlobalValue *GV);
bool isReadOnlySegment(const GlobalValue *GV);
/// \returns True if constants should be emitted to .text section for given
/// target triple \p TT, false otherwise.
bool shouldEmitConstantsToTextSection(const Triple &TT);
/// \returns Integer value requested using \p F's \p Name attribute.
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if requested value cannot be converted
/// to integer.
int getIntegerAttribute(const Function &F, StringRef Name, int Default);
/// \returns A pair of integer values requested using \p F's \p Name attribute
/// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired
/// is false).
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if one of the requested values cannot be
/// converted to integer, or \p OnlyFirstRequired is false and "second" value is
/// not present.
std::pair<int, int> getIntegerPairAttribute(const Function &F,
StringRef Name,
std::pair<int, int> Default,
bool OnlyFirstRequired = false);
/// Represents the counter values to wait for in an s_waitcnt instruction.
///
/// Large values (including the maximum possible integer) can be used to
/// represent "don't care" waits.
struct Waitcnt {
unsigned VmCnt = ~0u;
unsigned ExpCnt = ~0u;
unsigned LgkmCnt = ~0u;
unsigned VsCnt = ~0u;
Waitcnt() {}
Waitcnt(unsigned VmCnt, unsigned ExpCnt, unsigned LgkmCnt, unsigned VsCnt)
: VmCnt(VmCnt), ExpCnt(ExpCnt), LgkmCnt(LgkmCnt), VsCnt(VsCnt) {}
static Waitcnt allZero(bool HasVscnt) {
return Waitcnt(0, 0, 0, HasVscnt ? 0 : ~0u);
}
static Waitcnt allZeroExceptVsCnt() { return Waitcnt(0, 0, 0, ~0u); }
bool hasWait() const {
return VmCnt != ~0u || ExpCnt != ~0u || LgkmCnt != ~0u || VsCnt != ~0u;
}
bool dominates(const Waitcnt &Other) const {
return VmCnt <= Other.VmCnt && ExpCnt <= Other.ExpCnt &&
LgkmCnt <= Other.LgkmCnt && VsCnt <= Other.VsCnt;
}
Waitcnt combined(const Waitcnt &Other) const {
return Waitcnt(std::min(VmCnt, Other.VmCnt), std::min(ExpCnt, Other.ExpCnt),
std::min(LgkmCnt, Other.LgkmCnt),
std::min(VsCnt, Other.VsCnt));
}
};
/// \returns Vmcnt bit mask for given isa \p Version.
unsigned getVmcntBitMask(const IsaVersion &Version);
/// \returns Expcnt bit mask for given isa \p Version.
unsigned getExpcntBitMask(const IsaVersion &Version);
/// \returns Lgkmcnt bit mask for given isa \p Version.
unsigned getLgkmcntBitMask(const IsaVersion &Version);
/// \returns Waitcnt bit mask for given isa \p Version.
unsigned getWaitcntBitMask(const IsaVersion &Version);
/// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt);
/// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt);
/// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt);
/// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa
/// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and
/// \p Lgkmcnt respectively.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows:
/// \p Vmcnt = \p Waitcnt[3:0] (pre-gfx9 only)
/// \p Vmcnt = \p Waitcnt[3:0] | \p Waitcnt[15:14] (gfx9+ only)
/// \p Expcnt = \p Waitcnt[6:4]
/// \p Lgkmcnt = \p Waitcnt[11:8] (pre-gfx10 only)
/// \p Lgkmcnt = \p Waitcnt[13:8] (gfx10+ only)
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt);
Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded);
/// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version.
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Vmcnt);
/// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version.
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Expcnt);
/// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version.
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Lgkmcnt);
/// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa
/// \p Version.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows:
/// Waitcnt[3:0] = \p Vmcnt (pre-gfx9 only)
/// Waitcnt[3:0] = \p Vmcnt[3:0] (gfx9+ only)
/// Waitcnt[6:4] = \p Expcnt
/// Waitcnt[11:8] = \p Lgkmcnt (pre-gfx10 only)
/// Waitcnt[13:8] = \p Lgkmcnt (gfx10+ only)
/// Waitcnt[15:14] = \p Vmcnt[5:4] (gfx9+ only)
///
/// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given
/// isa \p Version.
unsigned encodeWaitcnt(const IsaVersion &Version,
unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt);
unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded);
namespace Hwreg {
LLVM_READONLY
int64_t getHwregId(const StringRef Name);
LLVM_READNONE
bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI);
LLVM_READNONE
bool isValidHwreg(int64_t Id);
LLVM_READNONE
bool isValidHwregOffset(int64_t Offset);
LLVM_READNONE
bool isValidHwregWidth(int64_t Width);
LLVM_READNONE
uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width);
LLVM_READNONE
StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI);
void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width);
} // namespace Hwreg
namespace Exp {
bool getTgtName(unsigned Id, StringRef &Name, int &Index);
LLVM_READONLY
unsigned getTgtId(const StringRef Name);
LLVM_READNONE
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI);
} // namespace Exp
namespace MTBUFFormat {
LLVM_READNONE
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt);
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt);
int64_t getDfmt(const StringRef Name);
StringRef getDfmtName(unsigned Id);
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI);
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI);
bool isValidDfmtNfmt(unsigned Val, const MCSubtargetInfo &STI);
bool isValidNfmt(unsigned Val, const MCSubtargetInfo &STI);
int64_t getUnifiedFormat(const StringRef Name);
StringRef getUnifiedFormatName(unsigned Id);
bool isValidUnifiedFormat(unsigned Val);
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt);
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI);
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI);
} // namespace MTBUFFormat
namespace SendMsg {
LLVM_READONLY
int64_t getMsgId(const StringRef Name);
LLVM_READONLY
int64_t getMsgOpId(int64_t MsgId, const StringRef Name);
LLVM_READNONE
StringRef getMsgName(int64_t MsgId);
LLVM_READNONE
StringRef getMsgOpName(int64_t MsgId, int64_t OpId);
LLVM_READNONE
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict = true);
LLVM_READNONE
bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict = true);
LLVM_READNONE
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict = true);
LLVM_READNONE
bool msgRequiresOp(int64_t MsgId);
LLVM_READNONE
bool msgSupportsStream(int64_t MsgId, int64_t OpId);
void decodeMsg(unsigned Val,
uint16_t &MsgId,
uint16_t &OpId,
uint16_t &StreamId);
LLVM_READNONE
uint64_t encodeMsg(uint64_t MsgId,
uint64_t OpId,
uint64_t StreamId);
} // namespace SendMsg
unsigned getInitialPSInputAddr(const Function &F);
LLVM_READNONE
bool isShader(CallingConv::ID CC);
LLVM_READNONE
bool isGraphics(CallingConv::ID CC);
LLVM_READNONE
bool isCompute(CallingConv::ID CC);
LLVM_READNONE
bool isEntryFunctionCC(CallingConv::ID CC);
// These functions are considered entrypoints into the current module, i.e. they
// are allowed to be called from outside the current module. This is different
// from isEntryFunctionCC, which is only true for functions that are entered by
// the hardware. Module entry points include all entry functions but also
// include functions that can be called from other functions inside or outside
// the current module. Module entry functions are allowed to allocate LDS.
LLVM_READNONE
bool isModuleEntryFunctionCC(CallingConv::ID CC);
// FIXME: Remove this when calling conventions cleaned up
LLVM_READNONE
inline bool isKernel(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
default:
return false;
}
}
bool hasXNACK(const MCSubtargetInfo &STI);
bool hasSRAMECC(const MCSubtargetInfo &STI);
bool hasMIMG_R128(const MCSubtargetInfo &STI);
bool hasGFX10A16(const MCSubtargetInfo &STI);
bool hasG16(const MCSubtargetInfo &STI);
bool hasPackedD16(const MCSubtargetInfo &STI);
bool isSI(const MCSubtargetInfo &STI);
bool isCI(const MCSubtargetInfo &STI);
bool isVI(const MCSubtargetInfo &STI);
bool isGFX9(const MCSubtargetInfo &STI);
bool isGFX9Plus(const MCSubtargetInfo &STI);
bool isGFX10(const MCSubtargetInfo &STI);
bool isGFX10Plus(const MCSubtargetInfo &STI);
bool isGCN3Encoding(const MCSubtargetInfo &STI);
bool isGFX10_BEncoding(const MCSubtargetInfo &STI);
bool hasGFX10_3Insts(const MCSubtargetInfo &STI);
/// Is Reg - scalar register
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI);
/// Is there any intersection between registers
bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI);
/// If \p Reg is a pseudo reg, return the correct hardware register given
/// \p STI otherwise return \p Reg.
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI);
/// Convert hardware register \p Reg to a pseudo register
LLVM_READNONE
unsigned mc2PseudoReg(unsigned Reg);
/// Can this operand also contain immediate values?
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Is this floating-point operand?
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Does this opearnd support only inlinable literals?
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(unsigned RCID);
/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(const MCRegisterClass &RC);
/// Get size of register operand
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
unsigned OpNo);
LLVM_READNONE
inline unsigned getOperandSize(const MCOperandInfo &OpInfo) {
switch (OpInfo.OperandType) {
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
return 4;
case AMDGPU::OPERAND_REG_IMM_INT64:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
return 8;
case AMDGPU::OPERAND_REG_IMM_INT16:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
case AMDGPU::OPERAND_REG_IMM_V2INT16:
case AMDGPU::OPERAND_REG_IMM_V2FP16:
return 2;
default:
llvm_unreachable("unhandled operand type");
}
}
LLVM_READNONE
inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) {
return getOperandSize(Desc.OpInfo[OpNo]);
}
/// Is this literal inlinable, and not one of the values intended for floating
/// point values.
LLVM_READNONE
inline bool isInlinableIntLiteral(int64_t Literal) {
return Literal >= -16 && Literal <= 64;
}
/// Is this literal inlinable
LLVM_READNONE
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableIntLiteralV216(int32_t Literal);
LLVM_READNONE
bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi);
bool isArgPassedInSGPR(const Argument *Arg);
LLVM_READONLY
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset);
LLVM_READONLY
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset,
bool IsBuffer);
/// Convert \p ByteOffset to dwords if the subtarget uses dword SMRD immediate
/// offsets.
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset);
/// \returns The encoding that will be used for \p ByteOffset in the
/// SMRD offset field, or None if it won't fit. On GFX9 and GFX10
/// S_LOAD instructions have a signed offset, on other subtargets it is
/// unsigned. S_BUFFER has an unsigned offset for all subtargets.
Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
int64_t ByteOffset, bool IsBuffer);
/// \return The encoding that can be used for a 32-bit literal offset in an SMRD
/// instruction. This is only useful on CI.s
Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
int64_t ByteOffset);
/// For FLAT segment the offset must be positive;
/// MSB is ignored and forced to zero.
///
/// \return The number of bits available for the offset field in flat
/// instructions.
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed);
/// \returns true if this offset is small enough to fit in the SMRD
/// offset field. \p ByteOffset should be the offset in bytes and
/// not the encoded offset.
bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
const GCNSubtarget *Subtarget,
Align Alignment = Align(4));
/// \returns true if the intrinsic is divergent
bool isIntrinsicSourceOfDivergence(unsigned IntrID);
// Track defaults for fields in the MODE registser.
struct SIModeRegisterDefaults {
/// Floating point opcodes that support exception flag gathering quiet and
/// propagate signaling NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10
/// become IEEE 754- 2008 compliant due to signaling NaN propagation and
/// quieting.
bool IEEE : 1;
/// Used by the vector ALU to force DX10-style treatment of NaNs: when set,
/// clamp NaN to zero; otherwise, pass NaN through.
bool DX10Clamp : 1;
/// If this is set, neither input or output denormals are flushed for most f32
/// instructions.
bool FP32InputDenormals : 1;
bool FP32OutputDenormals : 1;
/// If this is set, neither input or output denormals are flushed for both f64
/// and f16/v2f16 instructions.
bool FP64FP16InputDenormals : 1;
bool FP64FP16OutputDenormals : 1;
SIModeRegisterDefaults() :
IEEE(true),
DX10Clamp(true),
FP32InputDenormals(true),
FP32OutputDenormals(true),
FP64FP16InputDenormals(true),
FP64FP16OutputDenormals(true) {}
SIModeRegisterDefaults(const Function &F);
static SIModeRegisterDefaults getDefaultForCallingConv(CallingConv::ID CC) {
SIModeRegisterDefaults Mode;
Mode.IEEE = !AMDGPU::isShader(CC);
return Mode;
}
bool operator ==(const SIModeRegisterDefaults Other) const {
return IEEE == Other.IEEE && DX10Clamp == Other.DX10Clamp &&
FP32InputDenormals == Other.FP32InputDenormals &&
FP32OutputDenormals == Other.FP32OutputDenormals &&
FP64FP16InputDenormals == Other.FP64FP16InputDenormals &&
FP64FP16OutputDenormals == Other.FP64FP16OutputDenormals;
}
bool allFP32Denormals() const {
return FP32InputDenormals && FP32OutputDenormals;
}
bool allFP64FP16Denormals() const {
return FP64FP16InputDenormals && FP64FP16OutputDenormals;
}
/// Get the encoding value for the FP_DENORM bits of the mode register for the
/// FP32 denormal mode.
uint32_t fpDenormModeSPValue() const {
if (FP32InputDenormals && FP32OutputDenormals)
return FP_DENORM_FLUSH_NONE;
if (FP32InputDenormals)
return FP_DENORM_FLUSH_OUT;
if (FP32OutputDenormals)
return FP_DENORM_FLUSH_IN;
return FP_DENORM_FLUSH_IN_FLUSH_OUT;
}
/// Get the encoding value for the FP_DENORM bits of the mode register for the
/// FP64/FP16 denormal mode.
uint32_t fpDenormModeDPValue() const {
if (FP64FP16InputDenormals && FP64FP16OutputDenormals)
return FP_DENORM_FLUSH_NONE;
if (FP64FP16InputDenormals)
return FP_DENORM_FLUSH_OUT;
if (FP64FP16OutputDenormals)
return FP_DENORM_FLUSH_IN;
return FP_DENORM_FLUSH_IN_FLUSH_OUT;
}
/// Returns true if a flag is compatible if it's enabled in the callee, but
/// disabled in the caller.
static bool oneWayCompatible(bool CallerMode, bool CalleeMode) {
return CallerMode == CalleeMode || (!CallerMode && CalleeMode);
}
// FIXME: Inlining should be OK for dx10-clamp, since the caller's mode should
// be able to override.
bool isInlineCompatible(SIModeRegisterDefaults CalleeMode) const {
if (DX10Clamp != CalleeMode.DX10Clamp)
return false;
if (IEEE != CalleeMode.IEEE)
return false;
// Allow inlining denormals enabled into denormals flushed functions.
return oneWayCompatible(FP64FP16InputDenormals, CalleeMode.FP64FP16InputDenormals) &&
oneWayCompatible(FP64FP16OutputDenormals, CalleeMode.FP64FP16OutputDenormals) &&
oneWayCompatible(FP32InputDenormals, CalleeMode.FP32InputDenormals) &&
oneWayCompatible(FP32OutputDenormals, CalleeMode.FP32OutputDenormals);
}
};
} // end namespace AMDGPU
raw_ostream &operator<<(raw_ostream &OS,
const AMDGPU::IsaInfo::TargetIDSetting S);
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H