468 lines
16 KiB
C
468 lines
16 KiB
C
|
//===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file provides a template that implements the core algorithm for the
|
||
|
// SSAUpdater and MachineSSAUpdater.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
||
|
#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
||
|
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/Support/Allocator.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
|
||
|
#define DEBUG_TYPE "ssaupdater"
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
template<typename T> class SSAUpdaterTraits;
|
||
|
|
||
|
template<typename UpdaterT>
|
||
|
class SSAUpdaterImpl {
|
||
|
private:
|
||
|
UpdaterT *Updater;
|
||
|
|
||
|
using Traits = SSAUpdaterTraits<UpdaterT>;
|
||
|
using BlkT = typename Traits::BlkT;
|
||
|
using ValT = typename Traits::ValT;
|
||
|
using PhiT = typename Traits::PhiT;
|
||
|
|
||
|
/// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
|
||
|
/// The predecessors of each block are cached here since pred_iterator is
|
||
|
/// slow and we need to iterate over the blocks at least a few times.
|
||
|
class BBInfo {
|
||
|
public:
|
||
|
// Back-pointer to the corresponding block.
|
||
|
BlkT *BB;
|
||
|
|
||
|
// Value to use in this block.
|
||
|
ValT AvailableVal;
|
||
|
|
||
|
// Block that defines the available value.
|
||
|
BBInfo *DefBB;
|
||
|
|
||
|
// Postorder number.
|
||
|
int BlkNum = 0;
|
||
|
|
||
|
// Immediate dominator.
|
||
|
BBInfo *IDom = nullptr;
|
||
|
|
||
|
// Number of predecessor blocks.
|
||
|
unsigned NumPreds = 0;
|
||
|
|
||
|
// Array[NumPreds] of predecessor blocks.
|
||
|
BBInfo **Preds = nullptr;
|
||
|
|
||
|
// Marker for existing PHIs that match.
|
||
|
PhiT *PHITag = nullptr;
|
||
|
|
||
|
BBInfo(BlkT *ThisBB, ValT V)
|
||
|
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
|
||
|
};
|
||
|
|
||
|
using AvailableValsTy = DenseMap<BlkT *, ValT>;
|
||
|
|
||
|
AvailableValsTy *AvailableVals;
|
||
|
|
||
|
SmallVectorImpl<PhiT *> *InsertedPHIs;
|
||
|
|
||
|
using BlockListTy = SmallVectorImpl<BBInfo *>;
|
||
|
using BBMapTy = DenseMap<BlkT *, BBInfo *>;
|
||
|
|
||
|
BBMapTy BBMap;
|
||
|
BumpPtrAllocator Allocator;
|
||
|
|
||
|
public:
|
||
|
explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
|
||
|
SmallVectorImpl<PhiT *> *Ins) :
|
||
|
Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
|
||
|
|
||
|
/// GetValue - Check to see if AvailableVals has an entry for the specified
|
||
|
/// BB and if so, return it. If not, construct SSA form by first
|
||
|
/// calculating the required placement of PHIs and then inserting new PHIs
|
||
|
/// where needed.
|
||
|
ValT GetValue(BlkT *BB) {
|
||
|
SmallVector<BBInfo *, 100> BlockList;
|
||
|
BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
|
||
|
|
||
|
// Special case: bail out if BB is unreachable.
|
||
|
if (BlockList.size() == 0) {
|
||
|
ValT V = Traits::GetUndefVal(BB, Updater);
|
||
|
(*AvailableVals)[BB] = V;
|
||
|
return V;
|
||
|
}
|
||
|
|
||
|
FindDominators(&BlockList, PseudoEntry);
|
||
|
FindPHIPlacement(&BlockList);
|
||
|
FindAvailableVals(&BlockList);
|
||
|
|
||
|
return BBMap[BB]->DefBB->AvailableVal;
|
||
|
}
|
||
|
|
||
|
/// BuildBlockList - Starting from the specified basic block, traverse back
|
||
|
/// through its predecessors until reaching blocks with known values.
|
||
|
/// Create BBInfo structures for the blocks and append them to the block
|
||
|
/// list.
|
||
|
BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
|
||
|
SmallVector<BBInfo *, 10> RootList;
|
||
|
SmallVector<BBInfo *, 64> WorkList;
|
||
|
|
||
|
BBInfo *Info = new (Allocator) BBInfo(BB, 0);
|
||
|
BBMap[BB] = Info;
|
||
|
WorkList.push_back(Info);
|
||
|
|
||
|
// Search backward from BB, creating BBInfos along the way and stopping
|
||
|
// when reaching blocks that define the value. Record those defining
|
||
|
// blocks on the RootList.
|
||
|
SmallVector<BlkT *, 10> Preds;
|
||
|
while (!WorkList.empty()) {
|
||
|
Info = WorkList.pop_back_val();
|
||
|
Preds.clear();
|
||
|
Traits::FindPredecessorBlocks(Info->BB, &Preds);
|
||
|
Info->NumPreds = Preds.size();
|
||
|
if (Info->NumPreds == 0)
|
||
|
Info->Preds = nullptr;
|
||
|
else
|
||
|
Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
|
||
|
Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
|
||
|
|
||
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||
|
BlkT *Pred = Preds[p];
|
||
|
// Check if BBMap already has a BBInfo for the predecessor block.
|
||
|
typename BBMapTy::value_type &BBMapBucket =
|
||
|
BBMap.FindAndConstruct(Pred);
|
||
|
if (BBMapBucket.second) {
|
||
|
Info->Preds[p] = BBMapBucket.second;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Create a new BBInfo for the predecessor.
|
||
|
ValT PredVal = AvailableVals->lookup(Pred);
|
||
|
BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
|
||
|
BBMapBucket.second = PredInfo;
|
||
|
Info->Preds[p] = PredInfo;
|
||
|
|
||
|
if (PredInfo->AvailableVal) {
|
||
|
RootList.push_back(PredInfo);
|
||
|
continue;
|
||
|
}
|
||
|
WorkList.push_back(PredInfo);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now that we know what blocks are backwards-reachable from the starting
|
||
|
// block, do a forward depth-first traversal to assign postorder numbers
|
||
|
// to those blocks.
|
||
|
BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
|
||
|
unsigned BlkNum = 1;
|
||
|
|
||
|
// Initialize the worklist with the roots from the backward traversal.
|
||
|
while (!RootList.empty()) {
|
||
|
Info = RootList.pop_back_val();
|
||
|
Info->IDom = PseudoEntry;
|
||
|
Info->BlkNum = -1;
|
||
|
WorkList.push_back(Info);
|
||
|
}
|
||
|
|
||
|
while (!WorkList.empty()) {
|
||
|
Info = WorkList.back();
|
||
|
|
||
|
if (Info->BlkNum == -2) {
|
||
|
// All the successors have been handled; assign the postorder number.
|
||
|
Info->BlkNum = BlkNum++;
|
||
|
// If not a root, put it on the BlockList.
|
||
|
if (!Info->AvailableVal)
|
||
|
BlockList->push_back(Info);
|
||
|
WorkList.pop_back();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
||
|
// successors have been put on the worklist. When it returns to the top
|
||
|
// the list, after handling its successors, it will be assigned a
|
||
|
// number.
|
||
|
Info->BlkNum = -2;
|
||
|
|
||
|
// Add unvisited successors to the work list.
|
||
|
for (typename Traits::BlkSucc_iterator SI =
|
||
|
Traits::BlkSucc_begin(Info->BB),
|
||
|
E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
|
||
|
BBInfo *SuccInfo = BBMap[*SI];
|
||
|
if (!SuccInfo || SuccInfo->BlkNum)
|
||
|
continue;
|
||
|
SuccInfo->BlkNum = -1;
|
||
|
WorkList.push_back(SuccInfo);
|
||
|
}
|
||
|
}
|
||
|
PseudoEntry->BlkNum = BlkNum;
|
||
|
return PseudoEntry;
|
||
|
}
|
||
|
|
||
|
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
||
|
/// finding dominators. Given two basic blocks, it walks up the dominator
|
||
|
/// tree until it finds a common dominator of both. It uses the postorder
|
||
|
/// number of the blocks to determine how to do that.
|
||
|
BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
|
||
|
while (Blk1 != Blk2) {
|
||
|
while (Blk1->BlkNum < Blk2->BlkNum) {
|
||
|
Blk1 = Blk1->IDom;
|
||
|
if (!Blk1)
|
||
|
return Blk2;
|
||
|
}
|
||
|
while (Blk2->BlkNum < Blk1->BlkNum) {
|
||
|
Blk2 = Blk2->IDom;
|
||
|
if (!Blk2)
|
||
|
return Blk1;
|
||
|
}
|
||
|
}
|
||
|
return Blk1;
|
||
|
}
|
||
|
|
||
|
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
||
|
/// corresponding to the basic blocks on the BlockList. This uses the
|
||
|
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
|
||
|
/// and Kennedy, published in Software--Practice and Experience, 2001,
|
||
|
/// 4:1-10. Because the CFG subset does not include any edges leading into
|
||
|
/// blocks that define the value, the results are not the usual dominator
|
||
|
/// tree. The CFG subset has a single pseudo-entry node with edges to a set
|
||
|
/// of root nodes for blocks that define the value. The dominators for this
|
||
|
/// subset CFG are not the standard dominators but they are adequate for
|
||
|
/// placing PHIs within the subset CFG.
|
||
|
void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
|
||
|
bool Changed;
|
||
|
do {
|
||
|
Changed = false;
|
||
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||
|
E = BlockList->rend(); I != E; ++I) {
|
||
|
BBInfo *Info = *I;
|
||
|
BBInfo *NewIDom = nullptr;
|
||
|
|
||
|
// Iterate through the block's predecessors.
|
||
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||
|
BBInfo *Pred = Info->Preds[p];
|
||
|
|
||
|
// Treat an unreachable predecessor as a definition with 'undef'.
|
||
|
if (Pred->BlkNum == 0) {
|
||
|
Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
|
||
|
(*AvailableVals)[Pred->BB] = Pred->AvailableVal;
|
||
|
Pred->DefBB = Pred;
|
||
|
Pred->BlkNum = PseudoEntry->BlkNum;
|
||
|
PseudoEntry->BlkNum++;
|
||
|
}
|
||
|
|
||
|
if (!NewIDom)
|
||
|
NewIDom = Pred;
|
||
|
else
|
||
|
NewIDom = IntersectDominators(NewIDom, Pred);
|
||
|
}
|
||
|
|
||
|
// Check if the IDom value has changed.
|
||
|
if (NewIDom && NewIDom != Info->IDom) {
|
||
|
Info->IDom = NewIDom;
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
} while (Changed);
|
||
|
}
|
||
|
|
||
|
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
||
|
/// any blocks containing definitions of the value. If one is found, then
|
||
|
/// the successor of Pred is in the dominance frontier for the definition,
|
||
|
/// and this function returns true.
|
||
|
bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
|
||
|
for (; Pred != IDom; Pred = Pred->IDom) {
|
||
|
if (Pred->DefBB == Pred)
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
|
||
|
/// of the known definitions. Iteratively add PHIs in the dom frontiers
|
||
|
/// until nothing changes. Along the way, keep track of the nearest
|
||
|
/// dominating definitions for non-PHI blocks.
|
||
|
void FindPHIPlacement(BlockListTy *BlockList) {
|
||
|
bool Changed;
|
||
|
do {
|
||
|
Changed = false;
|
||
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||
|
E = BlockList->rend(); I != E; ++I) {
|
||
|
BBInfo *Info = *I;
|
||
|
|
||
|
// If this block already needs a PHI, there is nothing to do here.
|
||
|
if (Info->DefBB == Info)
|
||
|
continue;
|
||
|
|
||
|
// Default to use the same def as the immediate dominator.
|
||
|
BBInfo *NewDefBB = Info->IDom->DefBB;
|
||
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||
|
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
||
|
// Need a PHI here.
|
||
|
NewDefBB = Info;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Check if anything changed.
|
||
|
if (NewDefBB != Info->DefBB) {
|
||
|
Info->DefBB = NewDefBB;
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
} while (Changed);
|
||
|
}
|
||
|
|
||
|
/// FindAvailableVal - If this block requires a PHI, first check if an
|
||
|
/// existing PHI matches the PHI placement and reaching definitions computed
|
||
|
/// earlier, and if not, create a new PHI. Visit all the block's
|
||
|
/// predecessors to calculate the available value for each one and fill in
|
||
|
/// the incoming values for a new PHI.
|
||
|
void FindAvailableVals(BlockListTy *BlockList) {
|
||
|
// Go through the worklist in forward order (i.e., backward through the CFG)
|
||
|
// and check if existing PHIs can be used. If not, create empty PHIs where
|
||
|
// they are needed.
|
||
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
||
|
E = BlockList->end(); I != E; ++I) {
|
||
|
BBInfo *Info = *I;
|
||
|
// Check if there needs to be a PHI in BB.
|
||
|
if (Info->DefBB != Info)
|
||
|
continue;
|
||
|
|
||
|
// Look for an existing PHI.
|
||
|
FindExistingPHI(Info->BB, BlockList);
|
||
|
if (Info->AvailableVal)
|
||
|
continue;
|
||
|
|
||
|
ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
|
||
|
Info->AvailableVal = PHI;
|
||
|
(*AvailableVals)[Info->BB] = PHI;
|
||
|
}
|
||
|
|
||
|
// Now go back through the worklist in reverse order to fill in the
|
||
|
// arguments for any new PHIs added in the forward traversal.
|
||
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||
|
E = BlockList->rend(); I != E; ++I) {
|
||
|
BBInfo *Info = *I;
|
||
|
|
||
|
if (Info->DefBB != Info) {
|
||
|
// Record the available value to speed up subsequent uses of this
|
||
|
// SSAUpdater for the same value.
|
||
|
(*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Check if this block contains a newly added PHI.
|
||
|
PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
|
||
|
if (!PHI)
|
||
|
continue;
|
||
|
|
||
|
// Iterate through the block's predecessors.
|
||
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||
|
BBInfo *PredInfo = Info->Preds[p];
|
||
|
BlkT *Pred = PredInfo->BB;
|
||
|
// Skip to the nearest preceding definition.
|
||
|
if (PredInfo->DefBB != PredInfo)
|
||
|
PredInfo = PredInfo->DefBB;
|
||
|
Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
|
||
|
}
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
|
||
|
|
||
|
// If the client wants to know about all new instructions, tell it.
|
||
|
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
||
|
/// them match what is needed.
|
||
|
void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
|
||
|
for (auto &SomePHI : BB->phis()) {
|
||
|
if (CheckIfPHIMatches(&SomePHI)) {
|
||
|
RecordMatchingPHIs(BlockList);
|
||
|
break;
|
||
|
}
|
||
|
// Match failed: clear all the PHITag values.
|
||
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
||
|
E = BlockList->end(); I != E; ++I)
|
||
|
(*I)->PHITag = nullptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
||
|
/// in the BBMap.
|
||
|
bool CheckIfPHIMatches(PhiT *PHI) {
|
||
|
SmallVector<PhiT *, 20> WorkList;
|
||
|
WorkList.push_back(PHI);
|
||
|
|
||
|
// Mark that the block containing this PHI has been visited.
|
||
|
BBMap[PHI->getParent()]->PHITag = PHI;
|
||
|
|
||
|
while (!WorkList.empty()) {
|
||
|
PHI = WorkList.pop_back_val();
|
||
|
|
||
|
// Iterate through the PHI's incoming values.
|
||
|
for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
|
||
|
E = Traits::PHI_end(PHI); I != E; ++I) {
|
||
|
ValT IncomingVal = I.getIncomingValue();
|
||
|
BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
|
||
|
// Skip to the nearest preceding definition.
|
||
|
if (PredInfo->DefBB != PredInfo)
|
||
|
PredInfo = PredInfo->DefBB;
|
||
|
|
||
|
// Check if it matches the expected value.
|
||
|
if (PredInfo->AvailableVal) {
|
||
|
if (IncomingVal == PredInfo->AvailableVal)
|
||
|
continue;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Check if the value is a PHI in the correct block.
|
||
|
PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
|
||
|
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
|
||
|
return false;
|
||
|
|
||
|
// If this block has already been visited, check if this PHI matches.
|
||
|
if (PredInfo->PHITag) {
|
||
|
if (IncomingPHIVal == PredInfo->PHITag)
|
||
|
continue;
|
||
|
return false;
|
||
|
}
|
||
|
PredInfo->PHITag = IncomingPHIVal;
|
||
|
|
||
|
WorkList.push_back(IncomingPHIVal);
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// RecordMatchingPHIs - For each PHI node that matches, record it in both
|
||
|
/// the BBMap and the AvailableVals mapping.
|
||
|
void RecordMatchingPHIs(BlockListTy *BlockList) {
|
||
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
||
|
E = BlockList->end(); I != E; ++I)
|
||
|
if (PhiT *PHI = (*I)->PHITag) {
|
||
|
BlkT *BB = PHI->getParent();
|
||
|
ValT PHIVal = Traits::GetPHIValue(PHI);
|
||
|
(*AvailableVals)[BB] = PHIVal;
|
||
|
BBMap[BB]->AvailableVal = PHIVal;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#undef DEBUG_TYPE // "ssaupdater"
|
||
|
|
||
|
#endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|