llvm-for-llvmta/include/llvm/ProfileData/Coverage/CoverageMapping.h

1058 lines
37 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- CoverageMapping.h - Code coverage mapping support --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Code coverage mapping data is generated by clang and read by
// llvm-cov to show code coverage statistics for a file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_COVERAGE_COVERAGEMAPPING_H
#define LLVM_PROFILEDATA_COVERAGE_COVERAGEMAPPING_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
namespace llvm {
class IndexedInstrProfReader;
namespace coverage {
class CoverageMappingReader;
struct CoverageMappingRecord;
enum class coveragemap_error {
success = 0,
eof,
no_data_found,
unsupported_version,
truncated,
malformed,
decompression_failed,
invalid_or_missing_arch_specifier
};
const std::error_category &coveragemap_category();
inline std::error_code make_error_code(coveragemap_error E) {
return std::error_code(static_cast<int>(E), coveragemap_category());
}
class CoverageMapError : public ErrorInfo<CoverageMapError> {
public:
CoverageMapError(coveragemap_error Err) : Err(Err) {
assert(Err != coveragemap_error::success && "Not an error");
}
std::string message() const override;
void log(raw_ostream &OS) const override { OS << message(); }
std::error_code convertToErrorCode() const override {
return make_error_code(Err);
}
coveragemap_error get() const { return Err; }
static char ID;
private:
coveragemap_error Err;
};
/// A Counter is an abstract value that describes how to compute the
/// execution count for a region of code using the collected profile count data.
struct Counter {
/// The CounterExpression kind (Add or Subtract) is encoded in bit 0 next to
/// the CounterKind. This means CounterKind has to leave bit 0 free.
enum CounterKind { Zero, CounterValueReference, Expression };
static const unsigned EncodingTagBits = 2;
static const unsigned EncodingTagMask = 0x3;
static const unsigned EncodingCounterTagAndExpansionRegionTagBits =
EncodingTagBits + 1;
private:
CounterKind Kind = Zero;
unsigned ID = 0;
Counter(CounterKind Kind, unsigned ID) : Kind(Kind), ID(ID) {}
public:
Counter() = default;
CounterKind getKind() const { return Kind; }
bool isZero() const { return Kind == Zero; }
bool isExpression() const { return Kind == Expression; }
unsigned getCounterID() const { return ID; }
unsigned getExpressionID() const { return ID; }
friend bool operator==(const Counter &LHS, const Counter &RHS) {
return LHS.Kind == RHS.Kind && LHS.ID == RHS.ID;
}
friend bool operator!=(const Counter &LHS, const Counter &RHS) {
return !(LHS == RHS);
}
friend bool operator<(const Counter &LHS, const Counter &RHS) {
return std::tie(LHS.Kind, LHS.ID) < std::tie(RHS.Kind, RHS.ID);
}
/// Return the counter that represents the number zero.
static Counter getZero() { return Counter(); }
/// Return the counter that corresponds to a specific profile counter.
static Counter getCounter(unsigned CounterId) {
return Counter(CounterValueReference, CounterId);
}
/// Return the counter that corresponds to a specific addition counter
/// expression.
static Counter getExpression(unsigned ExpressionId) {
return Counter(Expression, ExpressionId);
}
};
/// A Counter expression is a value that represents an arithmetic operation
/// with two counters.
struct CounterExpression {
enum ExprKind { Subtract, Add };
ExprKind Kind;
Counter LHS, RHS;
CounterExpression(ExprKind Kind, Counter LHS, Counter RHS)
: Kind(Kind), LHS(LHS), RHS(RHS) {}
};
/// A Counter expression builder is used to construct the counter expressions.
/// It avoids unnecessary duplication and simplifies algebraic expressions.
class CounterExpressionBuilder {
/// A list of all the counter expressions
std::vector<CounterExpression> Expressions;
/// A lookup table for the index of a given expression.
DenseMap<CounterExpression, unsigned> ExpressionIndices;
/// Return the counter which corresponds to the given expression.
///
/// If the given expression is already stored in the builder, a counter
/// that references that expression is returned. Otherwise, the given
/// expression is added to the builder's collection of expressions.
Counter get(const CounterExpression &E);
/// Represents a term in a counter expression tree.
struct Term {
unsigned CounterID;
int Factor;
Term(unsigned CounterID, int Factor)
: CounterID(CounterID), Factor(Factor) {}
};
/// Gather the terms of the expression tree for processing.
///
/// This collects each addition and subtraction referenced by the counter into
/// a sequence that can be sorted and combined to build a simplified counter
/// expression.
void extractTerms(Counter C, int Sign, SmallVectorImpl<Term> &Terms);
/// Simplifies the given expression tree
/// by getting rid of algebraically redundant operations.
Counter simplify(Counter ExpressionTree);
public:
ArrayRef<CounterExpression> getExpressions() const { return Expressions; }
/// Return a counter that represents the expression that adds LHS and RHS.
Counter add(Counter LHS, Counter RHS);
/// Return a counter that represents the expression that subtracts RHS from
/// LHS.
Counter subtract(Counter LHS, Counter RHS);
};
using LineColPair = std::pair<unsigned, unsigned>;
/// A Counter mapping region associates a source range with a specific counter.
struct CounterMappingRegion {
enum RegionKind {
/// A CodeRegion associates some code with a counter
CodeRegion,
/// An ExpansionRegion represents a file expansion region that associates
/// a source range with the expansion of a virtual source file, such as
/// for a macro instantiation or #include file.
ExpansionRegion,
/// A SkippedRegion represents a source range with code that was skipped
/// by a preprocessor or similar means.
SkippedRegion,
/// A GapRegion is like a CodeRegion, but its count is only set as the
/// line execution count when its the only region in the line.
GapRegion,
/// A BranchRegion represents leaf-level boolean expressions and is
/// associated with two counters, each representing the number of times the
/// expression evaluates to true or false.
BranchRegion
};
/// Primary Counter that is also used for Branch Regions (TrueCount).
Counter Count;
/// Secondary Counter used for Branch Regions (FalseCount).
Counter FalseCount;
unsigned FileID, ExpandedFileID;
unsigned LineStart, ColumnStart, LineEnd, ColumnEnd;
RegionKind Kind;
CounterMappingRegion(Counter Count, unsigned FileID, unsigned ExpandedFileID,
unsigned LineStart, unsigned ColumnStart,
unsigned LineEnd, unsigned ColumnEnd, RegionKind Kind)
: Count(Count), FileID(FileID), ExpandedFileID(ExpandedFileID),
LineStart(LineStart), ColumnStart(ColumnStart), LineEnd(LineEnd),
ColumnEnd(ColumnEnd), Kind(Kind) {}
CounterMappingRegion(Counter Count, Counter FalseCount, unsigned FileID,
unsigned ExpandedFileID, unsigned LineStart,
unsigned ColumnStart, unsigned LineEnd,
unsigned ColumnEnd, RegionKind Kind)
: Count(Count), FalseCount(FalseCount), FileID(FileID),
ExpandedFileID(ExpandedFileID), LineStart(LineStart),
ColumnStart(ColumnStart), LineEnd(LineEnd), ColumnEnd(ColumnEnd),
Kind(Kind) {}
static CounterMappingRegion
makeRegion(Counter Count, unsigned FileID, unsigned LineStart,
unsigned ColumnStart, unsigned LineEnd, unsigned ColumnEnd) {
return CounterMappingRegion(Count, FileID, 0, LineStart, ColumnStart,
LineEnd, ColumnEnd, CodeRegion);
}
static CounterMappingRegion
makeExpansion(unsigned FileID, unsigned ExpandedFileID, unsigned LineStart,
unsigned ColumnStart, unsigned LineEnd, unsigned ColumnEnd) {
return CounterMappingRegion(Counter(), FileID, ExpandedFileID, LineStart,
ColumnStart, LineEnd, ColumnEnd,
ExpansionRegion);
}
static CounterMappingRegion
makeSkipped(unsigned FileID, unsigned LineStart, unsigned ColumnStart,
unsigned LineEnd, unsigned ColumnEnd) {
return CounterMappingRegion(Counter(), FileID, 0, LineStart, ColumnStart,
LineEnd, ColumnEnd, SkippedRegion);
}
static CounterMappingRegion
makeGapRegion(Counter Count, unsigned FileID, unsigned LineStart,
unsigned ColumnStart, unsigned LineEnd, unsigned ColumnEnd) {
return CounterMappingRegion(Count, FileID, 0, LineStart, ColumnStart,
LineEnd, (1U << 31) | ColumnEnd, GapRegion);
}
static CounterMappingRegion
makeBranchRegion(Counter Count, Counter FalseCount, unsigned FileID,
unsigned LineStart, unsigned ColumnStart, unsigned LineEnd,
unsigned ColumnEnd) {
return CounterMappingRegion(Count, FalseCount, FileID, 0, LineStart,
ColumnStart, LineEnd, ColumnEnd, BranchRegion);
}
inline LineColPair startLoc() const {
return LineColPair(LineStart, ColumnStart);
}
inline LineColPair endLoc() const { return LineColPair(LineEnd, ColumnEnd); }
};
/// Associates a source range with an execution count.
struct CountedRegion : public CounterMappingRegion {
uint64_t ExecutionCount;
uint64_t FalseExecutionCount;
bool Folded;
CountedRegion(const CounterMappingRegion &R, uint64_t ExecutionCount)
: CounterMappingRegion(R), ExecutionCount(ExecutionCount),
FalseExecutionCount(0), Folded(false) {}
CountedRegion(const CounterMappingRegion &R, uint64_t ExecutionCount,
uint64_t FalseExecutionCount)
: CounterMappingRegion(R), ExecutionCount(ExecutionCount),
FalseExecutionCount(FalseExecutionCount), Folded(false) {}
};
/// A Counter mapping context is used to connect the counters, expressions
/// and the obtained counter values.
class CounterMappingContext {
ArrayRef<CounterExpression> Expressions;
ArrayRef<uint64_t> CounterValues;
public:
CounterMappingContext(ArrayRef<CounterExpression> Expressions,
ArrayRef<uint64_t> CounterValues = None)
: Expressions(Expressions), CounterValues(CounterValues) {}
void setCounts(ArrayRef<uint64_t> Counts) { CounterValues = Counts; }
void dump(const Counter &C, raw_ostream &OS) const;
void dump(const Counter &C) const { dump(C, dbgs()); }
/// Return the number of times that a region of code associated with this
/// counter was executed.
Expected<int64_t> evaluate(const Counter &C) const;
};
/// Code coverage information for a single function.
struct FunctionRecord {
/// Raw function name.
std::string Name;
/// Mapping from FileID (i.e. vector index) to filename. Used to support
/// macro expansions within a function in which the macro and function are
/// defined in separate files.
///
/// TODO: Uniquing filenames across all function records may be a performance
/// optimization.
std::vector<std::string> Filenames;
/// Regions in the function along with their counts.
std::vector<CountedRegion> CountedRegions;
/// Branch Regions in the function along with their counts.
std::vector<CountedRegion> CountedBranchRegions;
/// The number of times this function was executed.
uint64_t ExecutionCount = 0;
FunctionRecord(StringRef Name, ArrayRef<StringRef> Filenames)
: Name(Name), Filenames(Filenames.begin(), Filenames.end()) {}
FunctionRecord(FunctionRecord &&FR) = default;
FunctionRecord &operator=(FunctionRecord &&) = default;
void pushRegion(CounterMappingRegion Region, uint64_t Count,
uint64_t FalseCount) {
if (Region.Kind == CounterMappingRegion::BranchRegion) {
CountedBranchRegions.emplace_back(Region, Count, FalseCount);
// If both counters are hard-coded to zero, then this region represents a
// constant-folded branch.
if (Region.Count.isZero() && Region.FalseCount.isZero())
CountedBranchRegions.back().Folded = true;
return;
}
if (CountedRegions.empty())
ExecutionCount = Count;
CountedRegions.emplace_back(Region, Count, FalseCount);
}
};
/// Iterator over Functions, optionally filtered to a single file.
class FunctionRecordIterator
: public iterator_facade_base<FunctionRecordIterator,
std::forward_iterator_tag, FunctionRecord> {
ArrayRef<FunctionRecord> Records;
ArrayRef<FunctionRecord>::iterator Current;
StringRef Filename;
/// Skip records whose primary file is not \c Filename.
void skipOtherFiles();
public:
FunctionRecordIterator(ArrayRef<FunctionRecord> Records_,
StringRef Filename = "")
: Records(Records_), Current(Records.begin()), Filename(Filename) {
skipOtherFiles();
}
FunctionRecordIterator() : Current(Records.begin()) {}
bool operator==(const FunctionRecordIterator &RHS) const {
return Current == RHS.Current && Filename == RHS.Filename;
}
const FunctionRecord &operator*() const { return *Current; }
FunctionRecordIterator &operator++() {
assert(Current != Records.end() && "incremented past end");
++Current;
skipOtherFiles();
return *this;
}
};
/// Coverage information for a macro expansion or #included file.
///
/// When covered code has pieces that can be expanded for more detail, such as a
/// preprocessor macro use and its definition, these are represented as
/// expansions whose coverage can be looked up independently.
struct ExpansionRecord {
/// The abstract file this expansion covers.
unsigned FileID;
/// The region that expands to this record.
const CountedRegion &Region;
/// Coverage for the expansion.
const FunctionRecord &Function;
ExpansionRecord(const CountedRegion &Region,
const FunctionRecord &Function)
: FileID(Region.ExpandedFileID), Region(Region), Function(Function) {}
};
/// The execution count information starting at a point in a file.
///
/// A sequence of CoverageSegments gives execution counts for a file in format
/// that's simple to iterate through for processing.
struct CoverageSegment {
/// The line where this segment begins.
unsigned Line;
/// The column where this segment begins.
unsigned Col;
/// The execution count, or zero if no count was recorded.
uint64_t Count;
/// When false, the segment was uninstrumented or skipped.
bool HasCount;
/// Whether this enters a new region or returns to a previous count.
bool IsRegionEntry;
/// Whether this enters a gap region.
bool IsGapRegion;
CoverageSegment(unsigned Line, unsigned Col, bool IsRegionEntry)
: Line(Line), Col(Col), Count(0), HasCount(false),
IsRegionEntry(IsRegionEntry), IsGapRegion(false) {}
CoverageSegment(unsigned Line, unsigned Col, uint64_t Count,
bool IsRegionEntry, bool IsGapRegion = false,
bool IsBranchRegion = false)
: Line(Line), Col(Col), Count(Count), HasCount(true),
IsRegionEntry(IsRegionEntry), IsGapRegion(IsGapRegion) {}
friend bool operator==(const CoverageSegment &L, const CoverageSegment &R) {
return std::tie(L.Line, L.Col, L.Count, L.HasCount, L.IsRegionEntry,
L.IsGapRegion) == std::tie(R.Line, R.Col, R.Count,
R.HasCount, R.IsRegionEntry,
R.IsGapRegion);
}
};
/// An instantiation group contains a \c FunctionRecord list, such that each
/// record corresponds to a distinct instantiation of the same function.
///
/// Note that it's possible for a function to have more than one instantiation
/// (consider C++ template specializations or static inline functions).
class InstantiationGroup {
friend class CoverageMapping;
unsigned Line;
unsigned Col;
std::vector<const FunctionRecord *> Instantiations;
InstantiationGroup(unsigned Line, unsigned Col,
std::vector<const FunctionRecord *> Instantiations)
: Line(Line), Col(Col), Instantiations(std::move(Instantiations)) {}
public:
InstantiationGroup(const InstantiationGroup &) = delete;
InstantiationGroup(InstantiationGroup &&) = default;
/// Get the number of instantiations in this group.
size_t size() const { return Instantiations.size(); }
/// Get the line where the common function was defined.
unsigned getLine() const { return Line; }
/// Get the column where the common function was defined.
unsigned getColumn() const { return Col; }
/// Check if the instantiations in this group have a common mangled name.
bool hasName() const {
for (unsigned I = 1, E = Instantiations.size(); I < E; ++I)
if (Instantiations[I]->Name != Instantiations[0]->Name)
return false;
return true;
}
/// Get the common mangled name for instantiations in this group.
StringRef getName() const {
assert(hasName() && "Instantiations don't have a shared name");
return Instantiations[0]->Name;
}
/// Get the total execution count of all instantiations in this group.
uint64_t getTotalExecutionCount() const {
uint64_t Count = 0;
for (const FunctionRecord *F : Instantiations)
Count += F->ExecutionCount;
return Count;
}
/// Get the instantiations in this group.
ArrayRef<const FunctionRecord *> getInstantiations() const {
return Instantiations;
}
};
/// Coverage information to be processed or displayed.
///
/// This represents the coverage of an entire file, expansion, or function. It
/// provides a sequence of CoverageSegments to iterate through, as well as the
/// list of expansions that can be further processed.
class CoverageData {
friend class CoverageMapping;
std::string Filename;
std::vector<CoverageSegment> Segments;
std::vector<ExpansionRecord> Expansions;
std::vector<CountedRegion> BranchRegions;
public:
CoverageData() = default;
CoverageData(StringRef Filename) : Filename(Filename) {}
/// Get the name of the file this data covers.
StringRef getFilename() const { return Filename; }
/// Get an iterator over the coverage segments for this object. The segments
/// are guaranteed to be uniqued and sorted by location.
std::vector<CoverageSegment>::const_iterator begin() const {
return Segments.begin();
}
std::vector<CoverageSegment>::const_iterator end() const {
return Segments.end();
}
bool empty() const { return Segments.empty(); }
/// Expansions that can be further processed.
ArrayRef<ExpansionRecord> getExpansions() const { return Expansions; }
/// Branches that can be further processed.
ArrayRef<CountedRegion> getBranches() const { return BranchRegions; }
};
/// The mapping of profile information to coverage data.
///
/// This is the main interface to get coverage information, using a profile to
/// fill out execution counts.
class CoverageMapping {
DenseMap<size_t, DenseSet<size_t>> RecordProvenance;
std::vector<FunctionRecord> Functions;
DenseMap<size_t, SmallVector<unsigned, 0>> FilenameHash2RecordIndices;
std::vector<std::pair<std::string, uint64_t>> FuncHashMismatches;
CoverageMapping() = default;
/// Add a function record corresponding to \p Record.
Error loadFunctionRecord(const CoverageMappingRecord &Record,
IndexedInstrProfReader &ProfileReader);
/// Look up the indices for function records which are at least partially
/// defined in the specified file. This is guaranteed to return a superset of
/// such records: extra records not in the file may be included if there is
/// a hash collision on the filename. Clients must be robust to collisions.
ArrayRef<unsigned>
getImpreciseRecordIndicesForFilename(StringRef Filename) const;
public:
CoverageMapping(const CoverageMapping &) = delete;
CoverageMapping &operator=(const CoverageMapping &) = delete;
/// Load the coverage mapping using the given readers.
static Expected<std::unique_ptr<CoverageMapping>>
load(ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader);
/// Load the coverage mapping from the given object files and profile. If
/// \p Arches is non-empty, it must specify an architecture for each object.
/// Ignores non-instrumented object files unless all are not instrumented.
static Expected<std::unique_ptr<CoverageMapping>>
load(ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
ArrayRef<StringRef> Arches = None);
/// The number of functions that couldn't have their profiles mapped.
///
/// This is a count of functions whose profile is out of date or otherwise
/// can't be associated with any coverage information.
unsigned getMismatchedCount() const { return FuncHashMismatches.size(); }
/// A hash mismatch occurs when a profile record for a symbol does not have
/// the same hash as a coverage mapping record for the same symbol. This
/// returns a list of hash mismatches, where each mismatch is a pair of the
/// symbol name and its coverage mapping hash.
ArrayRef<std::pair<std::string, uint64_t>> getHashMismatches() const {
return FuncHashMismatches;
}
/// Returns a lexicographically sorted, unique list of files that are
/// covered.
std::vector<StringRef> getUniqueSourceFiles() const;
/// Get the coverage for a particular file.
///
/// The given filename must be the name as recorded in the coverage
/// information. That is, only names returned from getUniqueSourceFiles will
/// yield a result.
CoverageData getCoverageForFile(StringRef Filename) const;
/// Get the coverage for a particular function.
CoverageData getCoverageForFunction(const FunctionRecord &Function) const;
/// Get the coverage for an expansion within a coverage set.
CoverageData getCoverageForExpansion(const ExpansionRecord &Expansion) const;
/// Gets all of the functions covered by this profile.
iterator_range<FunctionRecordIterator> getCoveredFunctions() const {
return make_range(FunctionRecordIterator(Functions),
FunctionRecordIterator());
}
/// Gets all of the functions in a particular file.
iterator_range<FunctionRecordIterator>
getCoveredFunctions(StringRef Filename) const {
return make_range(FunctionRecordIterator(Functions, Filename),
FunctionRecordIterator());
}
/// Get the list of function instantiation groups in a particular file.
///
/// Every instantiation group in a program is attributed to exactly one file:
/// the file in which the definition for the common function begins.
std::vector<InstantiationGroup>
getInstantiationGroups(StringRef Filename) const;
};
/// Coverage statistics for a single line.
class LineCoverageStats {
uint64_t ExecutionCount;
bool HasMultipleRegions;
bool Mapped;
unsigned Line;
ArrayRef<const CoverageSegment *> LineSegments;
const CoverageSegment *WrappedSegment;
friend class LineCoverageIterator;
LineCoverageStats() = default;
public:
LineCoverageStats(ArrayRef<const CoverageSegment *> LineSegments,
const CoverageSegment *WrappedSegment, unsigned Line);
uint64_t getExecutionCount() const { return ExecutionCount; }
bool hasMultipleRegions() const { return HasMultipleRegions; }
bool isMapped() const { return Mapped; }
unsigned getLine() const { return Line; }
ArrayRef<const CoverageSegment *> getLineSegments() const {
return LineSegments;
}
const CoverageSegment *getWrappedSegment() const { return WrappedSegment; }
};
/// An iterator over the \c LineCoverageStats objects for lines described by
/// a \c CoverageData instance.
class LineCoverageIterator
: public iterator_facade_base<
LineCoverageIterator, std::forward_iterator_tag, LineCoverageStats> {
public:
LineCoverageIterator(const CoverageData &CD)
: LineCoverageIterator(CD, CD.begin()->Line) {}
LineCoverageIterator(const CoverageData &CD, unsigned Line)
: CD(CD), WrappedSegment(nullptr), Next(CD.begin()), Ended(false),
Line(Line), Segments(), Stats() {
this->operator++();
}
bool operator==(const LineCoverageIterator &R) const {
return &CD == &R.CD && Next == R.Next && Ended == R.Ended;
}
const LineCoverageStats &operator*() const { return Stats; }
LineCoverageStats &operator*() { return Stats; }
LineCoverageIterator &operator++();
LineCoverageIterator getEnd() const {
auto EndIt = *this;
EndIt.Next = CD.end();
EndIt.Ended = true;
return EndIt;
}
private:
const CoverageData &CD;
const CoverageSegment *WrappedSegment;
std::vector<CoverageSegment>::const_iterator Next;
bool Ended;
unsigned Line;
SmallVector<const CoverageSegment *, 4> Segments;
LineCoverageStats Stats;
};
/// Get a \c LineCoverageIterator range for the lines described by \p CD.
static inline iterator_range<LineCoverageIterator>
getLineCoverageStats(const coverage::CoverageData &CD) {
auto Begin = LineCoverageIterator(CD);
auto End = Begin.getEnd();
return make_range(Begin, End);
}
// Coverage mappping data (V2) has the following layout:
// IPSK_covmap:
// [CoverageMapFileHeader]
// [ArrayStart]
// [CovMapFunctionRecordV2]
// [CovMapFunctionRecordV2]
// ...
// [ArrayEnd]
// [Encoded Filenames and Region Mapping Data]
//
// Coverage mappping data (V3) has the following layout:
// IPSK_covmap:
// [CoverageMapFileHeader]
// [Encoded Filenames]
// IPSK_covfun:
// [ArrayStart]
// odr_name_1: [CovMapFunctionRecordV3]
// odr_name_2: [CovMapFunctionRecordV3]
// ...
// [ArrayEnd]
//
// Both versions of the coverage mapping format encode the same information,
// but the V3 format does so more compactly by taking advantage of linkonce_odr
// semantics (it allows exactly 1 function record per name reference).
/// This namespace defines accessors shared by different versions of coverage
/// mapping records.
namespace accessors {
/// Return the structural hash associated with the function.
template <class FuncRecordTy, support::endianness Endian>
uint64_t getFuncHash(const FuncRecordTy *Record) {
return support::endian::byte_swap<uint64_t, Endian>(Record->FuncHash);
}
/// Return the coverage map data size for the function.
template <class FuncRecordTy, support::endianness Endian>
uint64_t getDataSize(const FuncRecordTy *Record) {
return support::endian::byte_swap<uint32_t, Endian>(Record->DataSize);
}
/// Return the function lookup key. The value is considered opaque.
template <class FuncRecordTy, support::endianness Endian>
uint64_t getFuncNameRef(const FuncRecordTy *Record) {
return support::endian::byte_swap<uint64_t, Endian>(Record->NameRef);
}
/// Return the PGO name of the function. Used for formats in which the name is
/// a hash.
template <class FuncRecordTy, support::endianness Endian>
Error getFuncNameViaRef(const FuncRecordTy *Record,
InstrProfSymtab &ProfileNames, StringRef &FuncName) {
uint64_t NameRef = getFuncNameRef<FuncRecordTy, Endian>(Record);
FuncName = ProfileNames.getFuncName(NameRef);
return Error::success();
}
/// Read coverage mapping out-of-line, from \p MappingBuf. This is used when the
/// coverage mapping is attached to the file header, instead of to the function
/// record.
template <class FuncRecordTy, support::endianness Endian>
StringRef getCoverageMappingOutOfLine(const FuncRecordTy *Record,
const char *MappingBuf) {
return {MappingBuf, size_t(getDataSize<FuncRecordTy, Endian>(Record))};
}
/// Advance to the next out-of-line coverage mapping and its associated
/// function record.
template <class FuncRecordTy, support::endianness Endian>
std::pair<const char *, const FuncRecordTy *>
advanceByOneOutOfLine(const FuncRecordTy *Record, const char *MappingBuf) {
return {MappingBuf + getDataSize<FuncRecordTy, Endian>(Record), Record + 1};
}
} // end namespace accessors
LLVM_PACKED_START
template <class IntPtrT>
struct CovMapFunctionRecordV1 {
using ThisT = CovMapFunctionRecordV1<IntPtrT>;
#define COVMAP_V1
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
#undef COVMAP_V1
CovMapFunctionRecordV1() = delete;
template <support::endianness Endian> uint64_t getFuncHash() const {
return accessors::getFuncHash<ThisT, Endian>(this);
}
template <support::endianness Endian> uint64_t getDataSize() const {
return accessors::getDataSize<ThisT, Endian>(this);
}
/// Return function lookup key. The value is consider opaque.
template <support::endianness Endian> IntPtrT getFuncNameRef() const {
return support::endian::byte_swap<IntPtrT, Endian>(NamePtr);
}
/// Return the PGO name of the function.
template <support::endianness Endian>
Error getFuncName(InstrProfSymtab &ProfileNames, StringRef &FuncName) const {
IntPtrT NameRef = getFuncNameRef<Endian>();
uint32_t NameS = support::endian::byte_swap<uint32_t, Endian>(NameSize);
FuncName = ProfileNames.getFuncName(NameRef, NameS);
if (NameS && FuncName.empty())
return make_error<CoverageMapError>(coveragemap_error::malformed);
return Error::success();
}
template <support::endianness Endian>
std::pair<const char *, const ThisT *>
advanceByOne(const char *MappingBuf) const {
return accessors::advanceByOneOutOfLine<ThisT, Endian>(this, MappingBuf);
}
template <support::endianness Endian> uint64_t getFilenamesRef() const {
llvm_unreachable("V1 function format does not contain a filenames ref");
}
template <support::endianness Endian>
StringRef getCoverageMapping(const char *MappingBuf) const {
return accessors::getCoverageMappingOutOfLine<ThisT, Endian>(this,
MappingBuf);
}
};
struct CovMapFunctionRecordV2 {
using ThisT = CovMapFunctionRecordV2;
#define COVMAP_V2
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
#undef COVMAP_V2
CovMapFunctionRecordV2() = delete;
template <support::endianness Endian> uint64_t getFuncHash() const {
return accessors::getFuncHash<ThisT, Endian>(this);
}
template <support::endianness Endian> uint64_t getDataSize() const {
return accessors::getDataSize<ThisT, Endian>(this);
}
template <support::endianness Endian> uint64_t getFuncNameRef() const {
return accessors::getFuncNameRef<ThisT, Endian>(this);
}
template <support::endianness Endian>
Error getFuncName(InstrProfSymtab &ProfileNames, StringRef &FuncName) const {
return accessors::getFuncNameViaRef<ThisT, Endian>(this, ProfileNames,
FuncName);
}
template <support::endianness Endian>
std::pair<const char *, const ThisT *>
advanceByOne(const char *MappingBuf) const {
return accessors::advanceByOneOutOfLine<ThisT, Endian>(this, MappingBuf);
}
template <support::endianness Endian> uint64_t getFilenamesRef() const {
llvm_unreachable("V2 function format does not contain a filenames ref");
}
template <support::endianness Endian>
StringRef getCoverageMapping(const char *MappingBuf) const {
return accessors::getCoverageMappingOutOfLine<ThisT, Endian>(this,
MappingBuf);
}
};
struct CovMapFunctionRecordV3 {
using ThisT = CovMapFunctionRecordV3;
#define COVMAP_V3
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
#undef COVMAP_V3
CovMapFunctionRecordV3() = delete;
template <support::endianness Endian> uint64_t getFuncHash() const {
return accessors::getFuncHash<ThisT, Endian>(this);
}
template <support::endianness Endian> uint64_t getDataSize() const {
return accessors::getDataSize<ThisT, Endian>(this);
}
template <support::endianness Endian> uint64_t getFuncNameRef() const {
return accessors::getFuncNameRef<ThisT, Endian>(this);
}
template <support::endianness Endian>
Error getFuncName(InstrProfSymtab &ProfileNames, StringRef &FuncName) const {
return accessors::getFuncNameViaRef<ThisT, Endian>(this, ProfileNames,
FuncName);
}
/// Get the filename set reference.
template <support::endianness Endian> uint64_t getFilenamesRef() const {
return support::endian::byte_swap<uint64_t, Endian>(FilenamesRef);
}
/// Read the inline coverage mapping. Ignore the buffer parameter, it is for
/// out-of-line coverage mapping data only.
template <support::endianness Endian>
StringRef getCoverageMapping(const char *) const {
return StringRef(&CoverageMapping, getDataSize<Endian>());
}
// Advance to the next inline coverage mapping and its associated function
// record. Ignore the out-of-line coverage mapping buffer.
template <support::endianness Endian>
std::pair<const char *, const CovMapFunctionRecordV3 *>
advanceByOne(const char *) const {
assert(isAddrAligned(Align(8), this) && "Function record not aligned");
const char *Next = ((const char *)this) + sizeof(CovMapFunctionRecordV3) -
sizeof(char) + getDataSize<Endian>();
// Each function record has an alignment of 8, so we need to adjust
// alignment before reading the next record.
Next += offsetToAlignedAddr(Next, Align(8));
return {nullptr, reinterpret_cast<const CovMapFunctionRecordV3 *>(Next)};
}
};
// Per module coverage mapping data header, i.e. CoverageMapFileHeader
// documented above.
struct CovMapHeader {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
template <support::endianness Endian> uint32_t getNRecords() const {
return support::endian::byte_swap<uint32_t, Endian>(NRecords);
}
template <support::endianness Endian> uint32_t getFilenamesSize() const {
return support::endian::byte_swap<uint32_t, Endian>(FilenamesSize);
}
template <support::endianness Endian> uint32_t getCoverageSize() const {
return support::endian::byte_swap<uint32_t, Endian>(CoverageSize);
}
template <support::endianness Endian> uint32_t getVersion() const {
return support::endian::byte_swap<uint32_t, Endian>(Version);
}
};
LLVM_PACKED_END
enum CovMapVersion {
Version1 = 0,
// Function's name reference from CovMapFuncRecord is changed from raw
// name string pointer to MD5 to support name section compression. Name
// section is also compressed.
Version2 = 1,
// A new interpretation of the columnEnd field is added in order to mark
// regions as gap areas.
Version3 = 2,
// Function records are named, uniqued, and moved to a dedicated section.
Version4 = 3,
// Branch regions referring to two counters are added
Version5 = 4,
// The current version is Version5.
CurrentVersion = INSTR_PROF_COVMAP_VERSION
};
template <int CovMapVersion, class IntPtrT> struct CovMapTraits {
using CovMapFuncRecordType = CovMapFunctionRecordV3;
using NameRefType = uint64_t;
};
template <class IntPtrT> struct CovMapTraits<CovMapVersion::Version3, IntPtrT> {
using CovMapFuncRecordType = CovMapFunctionRecordV2;
using NameRefType = uint64_t;
};
template <class IntPtrT> struct CovMapTraits<CovMapVersion::Version2, IntPtrT> {
using CovMapFuncRecordType = CovMapFunctionRecordV2;
using NameRefType = uint64_t;
};
template <class IntPtrT> struct CovMapTraits<CovMapVersion::Version1, IntPtrT> {
using CovMapFuncRecordType = CovMapFunctionRecordV1<IntPtrT>;
using NameRefType = IntPtrT;
};
} // end namespace coverage
/// Provide DenseMapInfo for CounterExpression
template<> struct DenseMapInfo<coverage::CounterExpression> {
static inline coverage::CounterExpression getEmptyKey() {
using namespace coverage;
return CounterExpression(CounterExpression::ExprKind::Subtract,
Counter::getCounter(~0U),
Counter::getCounter(~0U));
}
static inline coverage::CounterExpression getTombstoneKey() {
using namespace coverage;
return CounterExpression(CounterExpression::ExprKind::Add,
Counter::getCounter(~0U),
Counter::getCounter(~0U));
}
static unsigned getHashValue(const coverage::CounterExpression &V) {
return static_cast<unsigned>(
hash_combine(V.Kind, V.LHS.getKind(), V.LHS.getCounterID(),
V.RHS.getKind(), V.RHS.getCounterID()));
}
static bool isEqual(const coverage::CounterExpression &LHS,
const coverage::CounterExpression &RHS) {
return LHS.Kind == RHS.Kind && LHS.LHS == RHS.LHS && LHS.RHS == RHS.RHS;
}
};
} // end namespace llvm
#endif // LLVM_PROFILEDATA_COVERAGE_COVERAGEMAPPING_H