1266 lines
47 KiB
C++
1266 lines
47 KiB
C++
|
//===-- NullabilityChecker.cpp - Nullability checker ----------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This checker tries to find nullability violations. There are several kinds of
|
||
|
// possible violations:
|
||
|
// * Null pointer is passed to a pointer which has a _Nonnull type.
|
||
|
// * Null pointer is returned from a function which has a _Nonnull return type.
|
||
|
// * Nullable pointer is passed to a pointer which has a _Nonnull type.
|
||
|
// * Nullable pointer is returned from a function which has a _Nonnull return
|
||
|
// type.
|
||
|
// * Nullable pointer is dereferenced.
|
||
|
//
|
||
|
// This checker propagates the nullability information of the pointers and looks
|
||
|
// for the patterns that are described above. Explicit casts are trusted and are
|
||
|
// considered a way to suppress false positives for this checker. The other way
|
||
|
// to suppress warnings would be to add asserts or guarding if statements to the
|
||
|
// code. In addition to the nullability propagation this checker also uses some
|
||
|
// heuristics to suppress potential false positives.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
||
|
|
||
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
||
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
||
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
||
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
||
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
||
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
||
|
|
||
|
#include "llvm/ADT/StringExtras.h"
|
||
|
#include "llvm/Support/Path.h"
|
||
|
|
||
|
using namespace clang;
|
||
|
using namespace ento;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
/// Returns the most nullable nullability. This is used for message expressions
|
||
|
/// like [receiver method], where the nullability of this expression is either
|
||
|
/// the nullability of the receiver or the nullability of the return type of the
|
||
|
/// method, depending on which is more nullable. Contradicted is considered to
|
||
|
/// be the most nullable, to avoid false positive results.
|
||
|
Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
|
||
|
return static_cast<Nullability>(
|
||
|
std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
|
||
|
}
|
||
|
|
||
|
const char *getNullabilityString(Nullability Nullab) {
|
||
|
switch (Nullab) {
|
||
|
case Nullability::Contradicted:
|
||
|
return "contradicted";
|
||
|
case Nullability::Nullable:
|
||
|
return "nullable";
|
||
|
case Nullability::Unspecified:
|
||
|
return "unspecified";
|
||
|
case Nullability::Nonnull:
|
||
|
return "nonnull";
|
||
|
}
|
||
|
llvm_unreachable("Unexpected enumeration.");
|
||
|
return "";
|
||
|
}
|
||
|
|
||
|
// These enums are used as an index to ErrorMessages array.
|
||
|
enum class ErrorKind : int {
|
||
|
NilAssignedToNonnull,
|
||
|
NilPassedToNonnull,
|
||
|
NilReturnedToNonnull,
|
||
|
NullableAssignedToNonnull,
|
||
|
NullableReturnedToNonnull,
|
||
|
NullableDereferenced,
|
||
|
NullablePassedToNonnull
|
||
|
};
|
||
|
|
||
|
class NullabilityChecker
|
||
|
: public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
|
||
|
check::PostCall, check::PostStmt<ExplicitCastExpr>,
|
||
|
check::PostObjCMessage, check::DeadSymbols,
|
||
|
check::Location, check::Event<ImplicitNullDerefEvent>> {
|
||
|
|
||
|
public:
|
||
|
// If true, the checker will not diagnose nullabilility issues for calls
|
||
|
// to system headers. This option is motivated by the observation that large
|
||
|
// projects may have many nullability warnings. These projects may
|
||
|
// find warnings about nullability annotations that they have explicitly
|
||
|
// added themselves higher priority to fix than warnings on calls to system
|
||
|
// libraries.
|
||
|
DefaultBool NoDiagnoseCallsToSystemHeaders;
|
||
|
|
||
|
void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
|
||
|
void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
|
||
|
void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
|
||
|
void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
|
||
|
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
|
||
|
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
|
||
|
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
|
||
|
void checkEvent(ImplicitNullDerefEvent Event) const;
|
||
|
void checkLocation(SVal Location, bool IsLoad, const Stmt *S,
|
||
|
CheckerContext &C) const;
|
||
|
|
||
|
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
|
||
|
const char *Sep) const override;
|
||
|
|
||
|
enum CheckKind {
|
||
|
CK_NullPassedToNonnull,
|
||
|
CK_NullReturnedFromNonnull,
|
||
|
CK_NullableDereferenced,
|
||
|
CK_NullablePassedToNonnull,
|
||
|
CK_NullableReturnedFromNonnull,
|
||
|
CK_NumCheckKinds
|
||
|
};
|
||
|
|
||
|
DefaultBool ChecksEnabled[CK_NumCheckKinds];
|
||
|
CheckerNameRef CheckNames[CK_NumCheckKinds];
|
||
|
mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds];
|
||
|
|
||
|
const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const {
|
||
|
if (!BTs[Kind])
|
||
|
BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability",
|
||
|
categories::MemoryError));
|
||
|
return BTs[Kind];
|
||
|
}
|
||
|
|
||
|
// When set to false no nullability information will be tracked in
|
||
|
// NullabilityMap. It is possible to catch errors like passing a null pointer
|
||
|
// to a callee that expects nonnull argument without the information that is
|
||
|
// stroed in the NullabilityMap. This is an optimization.
|
||
|
DefaultBool NeedTracking;
|
||
|
|
||
|
private:
|
||
|
class NullabilityBugVisitor : public BugReporterVisitor {
|
||
|
public:
|
||
|
NullabilityBugVisitor(const MemRegion *M) : Region(M) {}
|
||
|
|
||
|
void Profile(llvm::FoldingSetNodeID &ID) const override {
|
||
|
static int X = 0;
|
||
|
ID.AddPointer(&X);
|
||
|
ID.AddPointer(Region);
|
||
|
}
|
||
|
|
||
|
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
|
||
|
BugReporterContext &BRC,
|
||
|
PathSensitiveBugReport &BR) override;
|
||
|
|
||
|
private:
|
||
|
// The tracked region.
|
||
|
const MemRegion *Region;
|
||
|
};
|
||
|
|
||
|
/// When any of the nonnull arguments of the analyzed function is null, do not
|
||
|
/// report anything and turn off the check.
|
||
|
///
|
||
|
/// When \p SuppressPath is set to true, no more bugs will be reported on this
|
||
|
/// path by this checker.
|
||
|
void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK,
|
||
|
ExplodedNode *N, const MemRegion *Region,
|
||
|
CheckerContext &C,
|
||
|
const Stmt *ValueExpr = nullptr,
|
||
|
bool SuppressPath = false) const;
|
||
|
|
||
|
void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
|
||
|
const MemRegion *Region, BugReporter &BR,
|
||
|
const Stmt *ValueExpr = nullptr) const {
|
||
|
const std::unique_ptr<BugType> &BT = getBugType(CK);
|
||
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
|
||
|
if (Region) {
|
||
|
R->markInteresting(Region);
|
||
|
R->addVisitor(std::make_unique<NullabilityBugVisitor>(Region));
|
||
|
}
|
||
|
if (ValueExpr) {
|
||
|
R->addRange(ValueExpr->getSourceRange());
|
||
|
if (Error == ErrorKind::NilAssignedToNonnull ||
|
||
|
Error == ErrorKind::NilPassedToNonnull ||
|
||
|
Error == ErrorKind::NilReturnedToNonnull)
|
||
|
if (const auto *Ex = dyn_cast<Expr>(ValueExpr))
|
||
|
bugreporter::trackExpressionValue(N, Ex, *R);
|
||
|
}
|
||
|
BR.emitReport(std::move(R));
|
||
|
}
|
||
|
|
||
|
/// If an SVal wraps a region that should be tracked, it will return a pointer
|
||
|
/// to the wrapped region. Otherwise it will return a nullptr.
|
||
|
const SymbolicRegion *getTrackRegion(SVal Val,
|
||
|
bool CheckSuperRegion = false) const;
|
||
|
|
||
|
/// Returns true if the call is diagnosable in the current analyzer
|
||
|
/// configuration.
|
||
|
bool isDiagnosableCall(const CallEvent &Call) const {
|
||
|
if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader())
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class NullabilityState {
|
||
|
public:
|
||
|
NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
|
||
|
: Nullab(Nullab), Source(Source) {}
|
||
|
|
||
|
const Stmt *getNullabilitySource() const { return Source; }
|
||
|
|
||
|
Nullability getValue() const { return Nullab; }
|
||
|
|
||
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
||
|
ID.AddInteger(static_cast<char>(Nullab));
|
||
|
ID.AddPointer(Source);
|
||
|
}
|
||
|
|
||
|
void print(raw_ostream &Out) const {
|
||
|
Out << getNullabilityString(Nullab) << "\n";
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
Nullability Nullab;
|
||
|
// Source is the expression which determined the nullability. For example in a
|
||
|
// message like [nullable nonnull_returning] has nullable nullability, because
|
||
|
// the receiver is nullable. Here the receiver will be the source of the
|
||
|
// nullability. This is useful information when the diagnostics are generated.
|
||
|
const Stmt *Source;
|
||
|
};
|
||
|
|
||
|
bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
|
||
|
return Lhs.getValue() == Rhs.getValue() &&
|
||
|
Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
|
||
|
}
|
||
|
|
||
|
} // end anonymous namespace
|
||
|
|
||
|
REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
|
||
|
NullabilityState)
|
||
|
|
||
|
// We say "the nullability type invariant is violated" when a location with a
|
||
|
// non-null type contains NULL or a function with a non-null return type returns
|
||
|
// NULL. Violations of the nullability type invariant can be detected either
|
||
|
// directly (for example, when NULL is passed as an argument to a nonnull
|
||
|
// parameter) or indirectly (for example, when, inside a function, the
|
||
|
// programmer defensively checks whether a nonnull parameter contains NULL and
|
||
|
// finds that it does).
|
||
|
//
|
||
|
// As a matter of policy, the nullability checker typically warns on direct
|
||
|
// violations of the nullability invariant (although it uses various
|
||
|
// heuristics to suppress warnings in some cases) but will not warn if the
|
||
|
// invariant has already been violated along the path (either directly or
|
||
|
// indirectly). As a practical matter, this prevents the analyzer from
|
||
|
// (1) warning on defensive code paths where a nullability precondition is
|
||
|
// determined to have been violated, (2) warning additional times after an
|
||
|
// initial direct violation has been discovered, and (3) warning after a direct
|
||
|
// violation that has been implicitly or explicitly suppressed (for
|
||
|
// example, with a cast of NULL to _Nonnull). In essence, once an invariant
|
||
|
// violation is detected on a path, this checker will be essentially turned off
|
||
|
// for the rest of the analysis
|
||
|
//
|
||
|
// The analyzer takes this approach (rather than generating a sink node) to
|
||
|
// ensure coverage of defensive paths, which may be important for backwards
|
||
|
// compatibility in codebases that were developed without nullability in mind.
|
||
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool)
|
||
|
|
||
|
enum class NullConstraint { IsNull, IsNotNull, Unknown };
|
||
|
|
||
|
static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
|
||
|
ProgramStateRef State) {
|
||
|
ConditionTruthVal Nullness = State->isNull(Val);
|
||
|
if (Nullness.isConstrainedFalse())
|
||
|
return NullConstraint::IsNotNull;
|
||
|
if (Nullness.isConstrainedTrue())
|
||
|
return NullConstraint::IsNull;
|
||
|
return NullConstraint::Unknown;
|
||
|
}
|
||
|
|
||
|
const SymbolicRegion *
|
||
|
NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
|
||
|
if (!NeedTracking)
|
||
|
return nullptr;
|
||
|
|
||
|
auto RegionSVal = Val.getAs<loc::MemRegionVal>();
|
||
|
if (!RegionSVal)
|
||
|
return nullptr;
|
||
|
|
||
|
const MemRegion *Region = RegionSVal->getRegion();
|
||
|
|
||
|
if (CheckSuperRegion) {
|
||
|
if (auto FieldReg = Region->getAs<FieldRegion>())
|
||
|
return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
|
||
|
if (auto ElementReg = Region->getAs<ElementRegion>())
|
||
|
return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
|
||
|
}
|
||
|
|
||
|
return dyn_cast<SymbolicRegion>(Region);
|
||
|
}
|
||
|
|
||
|
PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode(
|
||
|
const ExplodedNode *N, BugReporterContext &BRC,
|
||
|
PathSensitiveBugReport &BR) {
|
||
|
ProgramStateRef State = N->getState();
|
||
|
ProgramStateRef StatePrev = N->getFirstPred()->getState();
|
||
|
|
||
|
const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
|
||
|
const NullabilityState *TrackedNullabPrev =
|
||
|
StatePrev->get<NullabilityMap>(Region);
|
||
|
if (!TrackedNullab)
|
||
|
return nullptr;
|
||
|
|
||
|
if (TrackedNullabPrev &&
|
||
|
TrackedNullabPrev->getValue() == TrackedNullab->getValue())
|
||
|
return nullptr;
|
||
|
|
||
|
// Retrieve the associated statement.
|
||
|
const Stmt *S = TrackedNullab->getNullabilitySource();
|
||
|
if (!S || S->getBeginLoc().isInvalid()) {
|
||
|
S = N->getStmtForDiagnostics();
|
||
|
}
|
||
|
|
||
|
if (!S)
|
||
|
return nullptr;
|
||
|
|
||
|
std::string InfoText =
|
||
|
(llvm::Twine("Nullability '") +
|
||
|
getNullabilityString(TrackedNullab->getValue()) + "' is inferred")
|
||
|
.str();
|
||
|
|
||
|
// Generate the extra diagnostic.
|
||
|
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
|
||
|
N->getLocationContext());
|
||
|
return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true);
|
||
|
}
|
||
|
|
||
|
/// Returns true when the value stored at the given location has been
|
||
|
/// constrained to null after being passed through an object of nonnnull type.
|
||
|
static bool checkValueAtLValForInvariantViolation(ProgramStateRef State,
|
||
|
SVal LV, QualType T) {
|
||
|
if (getNullabilityAnnotation(T) != Nullability::Nonnull)
|
||
|
return false;
|
||
|
|
||
|
auto RegionVal = LV.getAs<loc::MemRegionVal>();
|
||
|
if (!RegionVal)
|
||
|
return false;
|
||
|
|
||
|
// If the value was constrained to null *after* it was passed through that
|
||
|
// location, it could not have been a concrete pointer *when* it was passed.
|
||
|
// In that case we would have handled the situation when the value was
|
||
|
// bound to that location, by emitting (or not emitting) a report.
|
||
|
// Therefore we are only interested in symbolic regions that can be either
|
||
|
// null or non-null depending on the value of their respective symbol.
|
||
|
auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>();
|
||
|
if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion()))
|
||
|
return false;
|
||
|
|
||
|
if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params,
|
||
|
ProgramStateRef State,
|
||
|
const LocationContext *LocCtxt) {
|
||
|
for (const auto *ParamDecl : Params) {
|
||
|
if (ParamDecl->isParameterPack())
|
||
|
break;
|
||
|
|
||
|
SVal LV = State->getLValue(ParamDecl, LocCtxt);
|
||
|
if (checkValueAtLValForInvariantViolation(State, LV,
|
||
|
ParamDecl->getType())) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
checkSelfIvarsForInvariantViolation(ProgramStateRef State,
|
||
|
const LocationContext *LocCtxt) {
|
||
|
auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl());
|
||
|
if (!MD || !MD->isInstanceMethod())
|
||
|
return false;
|
||
|
|
||
|
const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl();
|
||
|
if (!SelfDecl)
|
||
|
return false;
|
||
|
|
||
|
SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt));
|
||
|
|
||
|
const ObjCObjectPointerType *SelfType =
|
||
|
dyn_cast<ObjCObjectPointerType>(SelfDecl->getType());
|
||
|
if (!SelfType)
|
||
|
return false;
|
||
|
|
||
|
const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl();
|
||
|
if (!ID)
|
||
|
return false;
|
||
|
|
||
|
for (const auto *IvarDecl : ID->ivars()) {
|
||
|
SVal LV = State->getLValue(IvarDecl, SelfVal);
|
||
|
if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N,
|
||
|
CheckerContext &C) {
|
||
|
if (State->get<InvariantViolated>())
|
||
|
return true;
|
||
|
|
||
|
const LocationContext *LocCtxt = C.getLocationContext();
|
||
|
const Decl *D = LocCtxt->getDecl();
|
||
|
if (!D)
|
||
|
return false;
|
||
|
|
||
|
ArrayRef<ParmVarDecl*> Params;
|
||
|
if (const auto *BD = dyn_cast<BlockDecl>(D))
|
||
|
Params = BD->parameters();
|
||
|
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
||
|
Params = FD->parameters();
|
||
|
else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
||
|
Params = MD->parameters();
|
||
|
else
|
||
|
return false;
|
||
|
|
||
|
if (checkParamsForPreconditionViolation(Params, State, LocCtxt) ||
|
||
|
checkSelfIvarsForInvariantViolation(State, LocCtxt)) {
|
||
|
if (!N->isSink())
|
||
|
C.addTransition(State->set<InvariantViolated>(true), N);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void NullabilityChecker::reportBugIfInvariantHolds(
|
||
|
StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
|
||
|
const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr,
|
||
|
bool SuppressPath) const {
|
||
|
ProgramStateRef OriginalState = N->getState();
|
||
|
|
||
|
if (checkInvariantViolation(OriginalState, N, C))
|
||
|
return;
|
||
|
if (SuppressPath) {
|
||
|
OriginalState = OriginalState->set<InvariantViolated>(true);
|
||
|
N = C.addTransition(OriginalState, N);
|
||
|
}
|
||
|
|
||
|
reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr);
|
||
|
}
|
||
|
|
||
|
/// Cleaning up the program state.
|
||
|
void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
|
||
|
CheckerContext &C) const {
|
||
|
ProgramStateRef State = C.getState();
|
||
|
NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
|
||
|
for (NullabilityMapTy::iterator I = Nullabilities.begin(),
|
||
|
E = Nullabilities.end();
|
||
|
I != E; ++I) {
|
||
|
const auto *Region = I->first->getAs<SymbolicRegion>();
|
||
|
assert(Region && "Non-symbolic region is tracked.");
|
||
|
if (SR.isDead(Region->getSymbol())) {
|
||
|
State = State->remove<NullabilityMap>(I->first);
|
||
|
}
|
||
|
}
|
||
|
// When one of the nonnull arguments are constrained to be null, nullability
|
||
|
// preconditions are violated. It is not enough to check this only when we
|
||
|
// actually report an error, because at that time interesting symbols might be
|
||
|
// reaped.
|
||
|
if (checkInvariantViolation(State, C.getPredecessor(), C))
|
||
|
return;
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
|
||
|
/// This callback triggers when a pointer is dereferenced and the analyzer does
|
||
|
/// not know anything about the value of that pointer. When that pointer is
|
||
|
/// nullable, this code emits a warning.
|
||
|
void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
|
||
|
if (Event.SinkNode->getState()->get<InvariantViolated>())
|
||
|
return;
|
||
|
|
||
|
const MemRegion *Region =
|
||
|
getTrackRegion(Event.Location, /*CheckSuperRegion=*/true);
|
||
|
if (!Region)
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef State = Event.SinkNode->getState();
|
||
|
const NullabilityState *TrackedNullability =
|
||
|
State->get<NullabilityMap>(Region);
|
||
|
|
||
|
if (!TrackedNullability)
|
||
|
return;
|
||
|
|
||
|
if (ChecksEnabled[CK_NullableDereferenced] &&
|
||
|
TrackedNullability->getValue() == Nullability::Nullable) {
|
||
|
BugReporter &BR = *Event.BR;
|
||
|
// Do not suppress errors on defensive code paths, because dereferencing
|
||
|
// a nullable pointer is always an error.
|
||
|
if (Event.IsDirectDereference)
|
||
|
reportBug("Nullable pointer is dereferenced",
|
||
|
ErrorKind::NullableDereferenced, CK_NullableDereferenced,
|
||
|
Event.SinkNode, Region, BR);
|
||
|
else {
|
||
|
reportBug("Nullable pointer is passed to a callee that requires a "
|
||
|
"non-null",
|
||
|
ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced,
|
||
|
Event.SinkNode, Region, BR);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Whenever we see a load from a typed memory region that's been annotated as
|
||
|
// 'nonnull', we want to trust the user on that and assume that it is is indeed
|
||
|
// non-null.
|
||
|
//
|
||
|
// We do so even if the value is known to have been assigned to null.
|
||
|
// The user should be warned on assigning the null value to a non-null pointer
|
||
|
// as opposed to warning on the later dereference of this pointer.
|
||
|
//
|
||
|
// \code
|
||
|
// int * _Nonnull var = 0; // we want to warn the user here...
|
||
|
// // . . .
|
||
|
// *var = 42; // ...and not here
|
||
|
// \endcode
|
||
|
void NullabilityChecker::checkLocation(SVal Location, bool IsLoad,
|
||
|
const Stmt *S,
|
||
|
CheckerContext &Context) const {
|
||
|
// We should care only about loads.
|
||
|
// The main idea is to add a constraint whenever we're loading a value from
|
||
|
// an annotated pointer type.
|
||
|
if (!IsLoad)
|
||
|
return;
|
||
|
|
||
|
// Annotations that we want to consider make sense only for types.
|
||
|
const auto *Region =
|
||
|
dyn_cast_or_null<TypedValueRegion>(Location.getAsRegion());
|
||
|
if (!Region)
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef State = Context.getState();
|
||
|
|
||
|
auto StoredVal = State->getSVal(Region).getAs<loc::MemRegionVal>();
|
||
|
if (!StoredVal)
|
||
|
return;
|
||
|
|
||
|
Nullability NullabilityOfTheLoadedValue =
|
||
|
getNullabilityAnnotation(Region->getValueType());
|
||
|
|
||
|
if (NullabilityOfTheLoadedValue == Nullability::Nonnull) {
|
||
|
// It doesn't matter what we think about this particular pointer, it should
|
||
|
// be considered non-null as annotated by the developer.
|
||
|
if (ProgramStateRef NewState = State->assume(*StoredVal, true)) {
|
||
|
Context.addTransition(NewState);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Find the outermost subexpression of E that is not an implicit cast.
|
||
|
/// This looks through the implicit casts to _Nonnull that ARC adds to
|
||
|
/// return expressions of ObjC types when the return type of the function or
|
||
|
/// method is non-null but the express is not.
|
||
|
static const Expr *lookThroughImplicitCasts(const Expr *E) {
|
||
|
return E->IgnoreImpCasts();
|
||
|
}
|
||
|
|
||
|
/// This method check when nullable pointer or null value is returned from a
|
||
|
/// function that has nonnull return type.
|
||
|
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
|
||
|
CheckerContext &C) const {
|
||
|
auto RetExpr = S->getRetValue();
|
||
|
if (!RetExpr)
|
||
|
return;
|
||
|
|
||
|
if (!RetExpr->getType()->isAnyPointerType())
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef State = C.getState();
|
||
|
if (State->get<InvariantViolated>())
|
||
|
return;
|
||
|
|
||
|
auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
|
||
|
if (!RetSVal)
|
||
|
return;
|
||
|
|
||
|
bool InSuppressedMethodFamily = false;
|
||
|
|
||
|
QualType RequiredRetType;
|
||
|
AnalysisDeclContext *DeclCtxt =
|
||
|
C.getLocationContext()->getAnalysisDeclContext();
|
||
|
const Decl *D = DeclCtxt->getDecl();
|
||
|
if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
||
|
// HACK: This is a big hammer to avoid warning when there are defensive
|
||
|
// nil checks in -init and -copy methods. We should add more sophisticated
|
||
|
// logic here to suppress on common defensive idioms but still
|
||
|
// warn when there is a likely problem.
|
||
|
ObjCMethodFamily Family = MD->getMethodFamily();
|
||
|
if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
|
||
|
InSuppressedMethodFamily = true;
|
||
|
|
||
|
RequiredRetType = MD->getReturnType();
|
||
|
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
|
||
|
RequiredRetType = FD->getReturnType();
|
||
|
} else {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
NullConstraint Nullness = getNullConstraint(*RetSVal, State);
|
||
|
|
||
|
Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);
|
||
|
|
||
|
// If the returned value is null but the type of the expression
|
||
|
// generating it is nonnull then we will suppress the diagnostic.
|
||
|
// This enables explicit suppression when returning a nil literal in a
|
||
|
// function with a _Nonnull return type:
|
||
|
// return (NSString * _Nonnull)0;
|
||
|
Nullability RetExprTypeLevelNullability =
|
||
|
getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());
|
||
|
|
||
|
bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
|
||
|
Nullness == NullConstraint::IsNull);
|
||
|
if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull &&
|
||
|
RetExprTypeLevelNullability != Nullability::Nonnull &&
|
||
|
!InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) {
|
||
|
static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
|
||
|
ExplodedNode *N = C.generateErrorNode(State, &Tag);
|
||
|
if (!N)
|
||
|
return;
|
||
|
|
||
|
SmallString<256> SBuf;
|
||
|
llvm::raw_svector_ostream OS(SBuf);
|
||
|
OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
|
||
|
OS << " returned from a " << C.getDeclDescription(D) <<
|
||
|
" that is expected to return a non-null value";
|
||
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull,
|
||
|
CK_NullReturnedFromNonnull, N, nullptr, C,
|
||
|
RetExpr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If null was returned from a non-null function, mark the nullability
|
||
|
// invariant as violated even if the diagnostic was suppressed.
|
||
|
if (NullReturnedFromNonNull) {
|
||
|
State = State->set<InvariantViolated>(true);
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const MemRegion *Region = getTrackRegion(*RetSVal);
|
||
|
if (!Region)
|
||
|
return;
|
||
|
|
||
|
const NullabilityState *TrackedNullability =
|
||
|
State->get<NullabilityMap>(Region);
|
||
|
if (TrackedNullability) {
|
||
|
Nullability TrackedNullabValue = TrackedNullability->getValue();
|
||
|
if (ChecksEnabled[CK_NullableReturnedFromNonnull] &&
|
||
|
Nullness != NullConstraint::IsNotNull &&
|
||
|
TrackedNullabValue == Nullability::Nullable &&
|
||
|
RequiredNullability == Nullability::Nonnull) {
|
||
|
static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
|
||
|
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
|
||
|
|
||
|
SmallString<256> SBuf;
|
||
|
llvm::raw_svector_ostream OS(SBuf);
|
||
|
OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
|
||
|
" that is expected to return a non-null value";
|
||
|
|
||
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull,
|
||
|
CK_NullableReturnedFromNonnull, N, Region, C);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
if (RequiredNullability == Nullability::Nullable) {
|
||
|
State = State->set<NullabilityMap>(Region,
|
||
|
NullabilityState(RequiredNullability,
|
||
|
S));
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// This callback warns when a nullable pointer or a null value is passed to a
|
||
|
/// function that expects its argument to be nonnull.
|
||
|
void NullabilityChecker::checkPreCall(const CallEvent &Call,
|
||
|
CheckerContext &C) const {
|
||
|
if (!Call.getDecl())
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef State = C.getState();
|
||
|
if (State->get<InvariantViolated>())
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef OrigState = State;
|
||
|
|
||
|
unsigned Idx = 0;
|
||
|
for (const ParmVarDecl *Param : Call.parameters()) {
|
||
|
if (Param->isParameterPack())
|
||
|
break;
|
||
|
|
||
|
if (Idx >= Call.getNumArgs())
|
||
|
break;
|
||
|
|
||
|
const Expr *ArgExpr = Call.getArgExpr(Idx);
|
||
|
auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
|
||
|
if (!ArgSVal)
|
||
|
continue;
|
||
|
|
||
|
if (!Param->getType()->isAnyPointerType() &&
|
||
|
!Param->getType()->isReferenceType())
|
||
|
continue;
|
||
|
|
||
|
NullConstraint Nullness = getNullConstraint(*ArgSVal, State);
|
||
|
|
||
|
Nullability RequiredNullability =
|
||
|
getNullabilityAnnotation(Param->getType());
|
||
|
Nullability ArgExprTypeLevelNullability =
|
||
|
getNullabilityAnnotation(ArgExpr->getType());
|
||
|
|
||
|
unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;
|
||
|
|
||
|
if (ChecksEnabled[CK_NullPassedToNonnull] &&
|
||
|
Nullness == NullConstraint::IsNull &&
|
||
|
ArgExprTypeLevelNullability != Nullability::Nonnull &&
|
||
|
RequiredNullability == Nullability::Nonnull &&
|
||
|
isDiagnosableCall(Call)) {
|
||
|
ExplodedNode *N = C.generateErrorNode(State);
|
||
|
if (!N)
|
||
|
return;
|
||
|
|
||
|
SmallString<256> SBuf;
|
||
|
llvm::raw_svector_ostream OS(SBuf);
|
||
|
OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
|
||
|
OS << " passed to a callee that requires a non-null " << ParamIdx
|
||
|
<< llvm::getOrdinalSuffix(ParamIdx) << " parameter";
|
||
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull,
|
||
|
CK_NullPassedToNonnull, N, nullptr, C, ArgExpr,
|
||
|
/*SuppressPath=*/false);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const MemRegion *Region = getTrackRegion(*ArgSVal);
|
||
|
if (!Region)
|
||
|
continue;
|
||
|
|
||
|
const NullabilityState *TrackedNullability =
|
||
|
State->get<NullabilityMap>(Region);
|
||
|
|
||
|
if (TrackedNullability) {
|
||
|
if (Nullness == NullConstraint::IsNotNull ||
|
||
|
TrackedNullability->getValue() != Nullability::Nullable)
|
||
|
continue;
|
||
|
|
||
|
if (ChecksEnabled[CK_NullablePassedToNonnull] &&
|
||
|
RequiredNullability == Nullability::Nonnull &&
|
||
|
isDiagnosableCall(Call)) {
|
||
|
ExplodedNode *N = C.addTransition(State);
|
||
|
SmallString<256> SBuf;
|
||
|
llvm::raw_svector_ostream OS(SBuf);
|
||
|
OS << "Nullable pointer is passed to a callee that requires a non-null "
|
||
|
<< ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
|
||
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull,
|
||
|
CK_NullablePassedToNonnull, N, Region, C,
|
||
|
ArgExpr, /*SuppressPath=*/true);
|
||
|
return;
|
||
|
}
|
||
|
if (ChecksEnabled[CK_NullableDereferenced] &&
|
||
|
Param->getType()->isReferenceType()) {
|
||
|
ExplodedNode *N = C.addTransition(State);
|
||
|
reportBugIfInvariantHolds("Nullable pointer is dereferenced",
|
||
|
ErrorKind::NullableDereferenced,
|
||
|
CK_NullableDereferenced, N, Region, C,
|
||
|
ArgExpr, /*SuppressPath=*/true);
|
||
|
return;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
if (State != OrigState)
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
|
||
|
/// Suppress the nullability warnings for some functions.
|
||
|
void NullabilityChecker::checkPostCall(const CallEvent &Call,
|
||
|
CheckerContext &C) const {
|
||
|
auto Decl = Call.getDecl();
|
||
|
if (!Decl)
|
||
|
return;
|
||
|
// ObjC Messages handles in a different callback.
|
||
|
if (Call.getKind() == CE_ObjCMessage)
|
||
|
return;
|
||
|
const FunctionType *FuncType = Decl->getFunctionType();
|
||
|
if (!FuncType)
|
||
|
return;
|
||
|
QualType ReturnType = FuncType->getReturnType();
|
||
|
if (!ReturnType->isAnyPointerType())
|
||
|
return;
|
||
|
ProgramStateRef State = C.getState();
|
||
|
if (State->get<InvariantViolated>())
|
||
|
return;
|
||
|
|
||
|
const MemRegion *Region = getTrackRegion(Call.getReturnValue());
|
||
|
if (!Region)
|
||
|
return;
|
||
|
|
||
|
// CG headers are misannotated. Do not warn for symbols that are the results
|
||
|
// of CG calls.
|
||
|
const SourceManager &SM = C.getSourceManager();
|
||
|
StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc()));
|
||
|
if (llvm::sys::path::filename(FilePath).startswith("CG")) {
|
||
|
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const NullabilityState *TrackedNullability =
|
||
|
State->get<NullabilityMap>(Region);
|
||
|
|
||
|
if (!TrackedNullability &&
|
||
|
getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
|
||
|
State = State->set<NullabilityMap>(Region, Nullability::Nullable);
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static Nullability getReceiverNullability(const ObjCMethodCall &M,
|
||
|
ProgramStateRef State) {
|
||
|
if (M.isReceiverSelfOrSuper()) {
|
||
|
// For super and super class receivers we assume that the receiver is
|
||
|
// nonnull.
|
||
|
return Nullability::Nonnull;
|
||
|
}
|
||
|
// Otherwise look up nullability in the state.
|
||
|
SVal Receiver = M.getReceiverSVal();
|
||
|
if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
|
||
|
// If the receiver is constrained to be nonnull, assume that it is nonnull
|
||
|
// regardless of its type.
|
||
|
NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
|
||
|
if (Nullness == NullConstraint::IsNotNull)
|
||
|
return Nullability::Nonnull;
|
||
|
}
|
||
|
auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
|
||
|
if (ValueRegionSVal) {
|
||
|
const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
|
||
|
assert(SelfRegion);
|
||
|
|
||
|
const NullabilityState *TrackedSelfNullability =
|
||
|
State->get<NullabilityMap>(SelfRegion);
|
||
|
if (TrackedSelfNullability)
|
||
|
return TrackedSelfNullability->getValue();
|
||
|
}
|
||
|
return Nullability::Unspecified;
|
||
|
}
|
||
|
|
||
|
/// Calculate the nullability of the result of a message expr based on the
|
||
|
/// nullability of the receiver, the nullability of the return value, and the
|
||
|
/// constraints.
|
||
|
void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
|
||
|
CheckerContext &C) const {
|
||
|
auto Decl = M.getDecl();
|
||
|
if (!Decl)
|
||
|
return;
|
||
|
QualType RetType = Decl->getReturnType();
|
||
|
if (!RetType->isAnyPointerType())
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef State = C.getState();
|
||
|
if (State->get<InvariantViolated>())
|
||
|
return;
|
||
|
|
||
|
const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
|
||
|
if (!ReturnRegion)
|
||
|
return;
|
||
|
|
||
|
auto Interface = Decl->getClassInterface();
|
||
|
auto Name = Interface ? Interface->getName() : "";
|
||
|
// In order to reduce the noise in the diagnostics generated by this checker,
|
||
|
// some framework and programming style based heuristics are used. These
|
||
|
// heuristics are for Cocoa APIs which have NS prefix.
|
||
|
if (Name.startswith("NS")) {
|
||
|
// Developers rely on dynamic invariants such as an item should be available
|
||
|
// in a collection, or a collection is not empty often. Those invariants can
|
||
|
// not be inferred by any static analysis tool. To not to bother the users
|
||
|
// with too many false positives, every item retrieval function should be
|
||
|
// ignored for collections. The instance methods of dictionaries in Cocoa
|
||
|
// are either item retrieval related or not interesting nullability wise.
|
||
|
// Using this fact, to keep the code easier to read just ignore the return
|
||
|
// value of every instance method of dictionaries.
|
||
|
if (M.isInstanceMessage() && Name.contains("Dictionary")) {
|
||
|
State =
|
||
|
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
// For similar reasons ignore some methods of Cocoa arrays.
|
||
|
StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
|
||
|
if (Name.contains("Array") &&
|
||
|
(FirstSelectorSlot == "firstObject" ||
|
||
|
FirstSelectorSlot == "lastObject")) {
|
||
|
State =
|
||
|
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Encoding related methods of string should not fail when lossless
|
||
|
// encodings are used. Using lossless encodings is so frequent that ignoring
|
||
|
// this class of methods reduced the emitted diagnostics by about 30% on
|
||
|
// some projects (and all of that was false positives).
|
||
|
if (Name.contains("String")) {
|
||
|
for (auto Param : M.parameters()) {
|
||
|
if (Param->getName() == "encoding") {
|
||
|
State = State->set<NullabilityMap>(ReturnRegion,
|
||
|
Nullability::Contradicted);
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const ObjCMessageExpr *Message = M.getOriginExpr();
|
||
|
Nullability SelfNullability = getReceiverNullability(M, State);
|
||
|
|
||
|
const NullabilityState *NullabilityOfReturn =
|
||
|
State->get<NullabilityMap>(ReturnRegion);
|
||
|
|
||
|
if (NullabilityOfReturn) {
|
||
|
// When we have a nullability tracked for the return value, the nullability
|
||
|
// of the expression will be the most nullable of the receiver and the
|
||
|
// return value.
|
||
|
Nullability RetValTracked = NullabilityOfReturn->getValue();
|
||
|
Nullability ComputedNullab =
|
||
|
getMostNullable(RetValTracked, SelfNullability);
|
||
|
if (ComputedNullab != RetValTracked &&
|
||
|
ComputedNullab != Nullability::Unspecified) {
|
||
|
const Stmt *NullabilitySource =
|
||
|
ComputedNullab == RetValTracked
|
||
|
? NullabilityOfReturn->getNullabilitySource()
|
||
|
: Message->getInstanceReceiver();
|
||
|
State = State->set<NullabilityMap>(
|
||
|
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// No tracked information. Use static type information for return value.
|
||
|
Nullability RetNullability = getNullabilityAnnotation(RetType);
|
||
|
|
||
|
// Properties might be computed. For this reason the static analyzer creates a
|
||
|
// new symbol each time an unknown property is read. To avoid false pozitives
|
||
|
// do not treat unknown properties as nullable, even when they explicitly
|
||
|
// marked nullable.
|
||
|
if (M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined)
|
||
|
RetNullability = Nullability::Nonnull;
|
||
|
|
||
|
Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
|
||
|
if (ComputedNullab == Nullability::Nullable) {
|
||
|
const Stmt *NullabilitySource = ComputedNullab == RetNullability
|
||
|
? Message
|
||
|
: Message->getInstanceReceiver();
|
||
|
State = State->set<NullabilityMap>(
|
||
|
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Explicit casts are trusted. If there is a disagreement in the nullability
|
||
|
/// annotations in the destination and the source or '0' is casted to nonnull
|
||
|
/// track the value as having contraditory nullability. This will allow users to
|
||
|
/// suppress warnings.
|
||
|
void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
|
||
|
CheckerContext &C) const {
|
||
|
QualType OriginType = CE->getSubExpr()->getType();
|
||
|
QualType DestType = CE->getType();
|
||
|
if (!OriginType->isAnyPointerType())
|
||
|
return;
|
||
|
if (!DestType->isAnyPointerType())
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef State = C.getState();
|
||
|
if (State->get<InvariantViolated>())
|
||
|
return;
|
||
|
|
||
|
Nullability DestNullability = getNullabilityAnnotation(DestType);
|
||
|
|
||
|
// No explicit nullability in the destination type, so this cast does not
|
||
|
// change the nullability.
|
||
|
if (DestNullability == Nullability::Unspecified)
|
||
|
return;
|
||
|
|
||
|
auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>();
|
||
|
const MemRegion *Region = getTrackRegion(*RegionSVal);
|
||
|
if (!Region)
|
||
|
return;
|
||
|
|
||
|
// When 0 is converted to nonnull mark it as contradicted.
|
||
|
if (DestNullability == Nullability::Nonnull) {
|
||
|
NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
|
||
|
if (Nullness == NullConstraint::IsNull) {
|
||
|
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const NullabilityState *TrackedNullability =
|
||
|
State->get<NullabilityMap>(Region);
|
||
|
|
||
|
if (!TrackedNullability) {
|
||
|
if (DestNullability != Nullability::Nullable)
|
||
|
return;
|
||
|
State = State->set<NullabilityMap>(Region,
|
||
|
NullabilityState(DestNullability, CE));
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (TrackedNullability->getValue() != DestNullability &&
|
||
|
TrackedNullability->getValue() != Nullability::Contradicted) {
|
||
|
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// For a given statement performing a bind, attempt to syntactically
|
||
|
/// match the expression resulting in the bound value.
|
||
|
static const Expr * matchValueExprForBind(const Stmt *S) {
|
||
|
// For `x = e` the value expression is the right-hand side.
|
||
|
if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
|
||
|
if (BinOp->getOpcode() == BO_Assign)
|
||
|
return BinOp->getRHS();
|
||
|
}
|
||
|
|
||
|
// For `int x = e` the value expression is the initializer.
|
||
|
if (auto *DS = dyn_cast<DeclStmt>(S)) {
|
||
|
if (DS->isSingleDecl()) {
|
||
|
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
|
||
|
if (!VD)
|
||
|
return nullptr;
|
||
|
|
||
|
if (const Expr *Init = VD->getInit())
|
||
|
return Init;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
/// Returns true if \param S is a DeclStmt for a local variable that
|
||
|
/// ObjC automated reference counting initialized with zero.
|
||
|
static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
|
||
|
// We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
|
||
|
// prevents false positives when a _Nonnull local variable cannot be
|
||
|
// initialized with an initialization expression:
|
||
|
// NSString * _Nonnull s; // no-warning
|
||
|
// @autoreleasepool {
|
||
|
// s = ...
|
||
|
// }
|
||
|
//
|
||
|
// FIXME: We should treat implicitly zero-initialized _Nonnull locals as
|
||
|
// uninitialized in Sema's UninitializedValues analysis to warn when a use of
|
||
|
// the zero-initialized definition will unexpectedly yield nil.
|
||
|
|
||
|
// Locals are only zero-initialized when automated reference counting
|
||
|
// is turned on.
|
||
|
if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
|
||
|
return false;
|
||
|
|
||
|
auto *DS = dyn_cast<DeclStmt>(S);
|
||
|
if (!DS || !DS->isSingleDecl())
|
||
|
return false;
|
||
|
|
||
|
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
|
||
|
if (!VD)
|
||
|
return false;
|
||
|
|
||
|
// Sema only zero-initializes locals with ObjCLifetimes.
|
||
|
if(!VD->getType().getQualifiers().hasObjCLifetime())
|
||
|
return false;
|
||
|
|
||
|
const Expr *Init = VD->getInit();
|
||
|
assert(Init && "ObjC local under ARC without initializer");
|
||
|
|
||
|
// Return false if the local is explicitly initialized (e.g., with '= nil').
|
||
|
if (!isa<ImplicitValueInitExpr>(Init))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Propagate the nullability information through binds and warn when nullable
|
||
|
/// pointer or null symbol is assigned to a pointer with a nonnull type.
|
||
|
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
|
||
|
CheckerContext &C) const {
|
||
|
const TypedValueRegion *TVR =
|
||
|
dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
|
||
|
if (!TVR)
|
||
|
return;
|
||
|
|
||
|
QualType LocType = TVR->getValueType();
|
||
|
if (!LocType->isAnyPointerType())
|
||
|
return;
|
||
|
|
||
|
ProgramStateRef State = C.getState();
|
||
|
if (State->get<InvariantViolated>())
|
||
|
return;
|
||
|
|
||
|
auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
|
||
|
if (!ValDefOrUnknown)
|
||
|
return;
|
||
|
|
||
|
NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);
|
||
|
|
||
|
Nullability ValNullability = Nullability::Unspecified;
|
||
|
if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
|
||
|
ValNullability = getNullabilityAnnotation(Sym->getType());
|
||
|
|
||
|
Nullability LocNullability = getNullabilityAnnotation(LocType);
|
||
|
|
||
|
// If the type of the RHS expression is nonnull, don't warn. This
|
||
|
// enables explicit suppression with a cast to nonnull.
|
||
|
Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
|
||
|
const Expr *ValueExpr = matchValueExprForBind(S);
|
||
|
if (ValueExpr) {
|
||
|
ValueExprTypeLevelNullability =
|
||
|
getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
|
||
|
}
|
||
|
|
||
|
bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
|
||
|
RhsNullness == NullConstraint::IsNull);
|
||
|
if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull &&
|
||
|
ValNullability != Nullability::Nonnull &&
|
||
|
ValueExprTypeLevelNullability != Nullability::Nonnull &&
|
||
|
!isARCNilInitializedLocal(C, S)) {
|
||
|
static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
|
||
|
ExplodedNode *N = C.generateErrorNode(State, &Tag);
|
||
|
if (!N)
|
||
|
return;
|
||
|
|
||
|
|
||
|
const Stmt *ValueStmt = S;
|
||
|
if (ValueExpr)
|
||
|
ValueStmt = ValueExpr;
|
||
|
|
||
|
SmallString<256> SBuf;
|
||
|
llvm::raw_svector_ostream OS(SBuf);
|
||
|
OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
|
||
|
OS << " assigned to a pointer which is expected to have non-null value";
|
||
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull,
|
||
|
CK_NullPassedToNonnull, N, nullptr, C, ValueStmt);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If null was returned from a non-null function, mark the nullability
|
||
|
// invariant as violated even if the diagnostic was suppressed.
|
||
|
if (NullAssignedToNonNull) {
|
||
|
State = State->set<InvariantViolated>(true);
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Intentionally missing case: '0' is bound to a reference. It is handled by
|
||
|
// the DereferenceChecker.
|
||
|
|
||
|
const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
|
||
|
if (!ValueRegion)
|
||
|
return;
|
||
|
|
||
|
const NullabilityState *TrackedNullability =
|
||
|
State->get<NullabilityMap>(ValueRegion);
|
||
|
|
||
|
if (TrackedNullability) {
|
||
|
if (RhsNullness == NullConstraint::IsNotNull ||
|
||
|
TrackedNullability->getValue() != Nullability::Nullable)
|
||
|
return;
|
||
|
if (ChecksEnabled[CK_NullablePassedToNonnull] &&
|
||
|
LocNullability == Nullability::Nonnull) {
|
||
|
static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
|
||
|
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
|
||
|
reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
|
||
|
"which is expected to have non-null value",
|
||
|
ErrorKind::NullableAssignedToNonnull,
|
||
|
CK_NullablePassedToNonnull, N, ValueRegion, C);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const auto *BinOp = dyn_cast<BinaryOperator>(S);
|
||
|
|
||
|
if (ValNullability == Nullability::Nullable) {
|
||
|
// Trust the static information of the value more than the static
|
||
|
// information on the location.
|
||
|
const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
|
||
|
State = State->set<NullabilityMap>(
|
||
|
ValueRegion, NullabilityState(ValNullability, NullabilitySource));
|
||
|
C.addTransition(State);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (LocNullability == Nullability::Nullable) {
|
||
|
const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
|
||
|
State = State->set<NullabilityMap>(
|
||
|
ValueRegion, NullabilityState(LocNullability, NullabilitySource));
|
||
|
C.addTransition(State);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
|
||
|
const char *NL, const char *Sep) const {
|
||
|
|
||
|
NullabilityMapTy B = State->get<NullabilityMap>();
|
||
|
|
||
|
if (State->get<InvariantViolated>())
|
||
|
Out << Sep << NL
|
||
|
<< "Nullability invariant was violated, warnings suppressed." << NL;
|
||
|
|
||
|
if (B.isEmpty())
|
||
|
return;
|
||
|
|
||
|
if (!State->get<InvariantViolated>())
|
||
|
Out << Sep << NL;
|
||
|
|
||
|
for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
||
|
Out << I->first << " : ";
|
||
|
I->second.print(Out);
|
||
|
Out << NL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ento::registerNullabilityBase(CheckerManager &mgr) {
|
||
|
mgr.registerChecker<NullabilityChecker>();
|
||
|
}
|
||
|
|
||
|
bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#define REGISTER_CHECKER(name, trackingRequired) \
|
||
|
void ento::register##name##Checker(CheckerManager &mgr) { \
|
||
|
NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>(); \
|
||
|
checker->ChecksEnabled[NullabilityChecker::CK_##name] = true; \
|
||
|
checker->CheckNames[NullabilityChecker::CK_##name] = \
|
||
|
mgr.getCurrentCheckerName(); \
|
||
|
checker->NeedTracking = checker->NeedTracking || trackingRequired; \
|
||
|
checker->NoDiagnoseCallsToSystemHeaders = \
|
||
|
checker->NoDiagnoseCallsToSystemHeaders || \
|
||
|
mgr.getAnalyzerOptions().getCheckerBooleanOption( \
|
||
|
checker, "NoDiagnoseCallsToSystemHeaders", true); \
|
||
|
} \
|
||
|
\
|
||
|
bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) { \
|
||
|
return true; \
|
||
|
}
|
||
|
|
||
|
// The checks are likely to be turned on by default and it is possible to do
|
||
|
// them without tracking any nullability related information. As an optimization
|
||
|
// no nullability information will be tracked when only these two checks are
|
||
|
// enables.
|
||
|
REGISTER_CHECKER(NullPassedToNonnull, false)
|
||
|
REGISTER_CHECKER(NullReturnedFromNonnull, false)
|
||
|
|
||
|
REGISTER_CHECKER(NullableDereferenced, true)
|
||
|
REGISTER_CHECKER(NullablePassedToNonnull, true)
|
||
|
REGISTER_CHECKER(NullableReturnedFromNonnull, true)
|