llvm-for-llvmta/include/llvm/CodeGen/GlobalISel/MachineIRBuilder.h

1807 lines
74 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.h - MIBuilder --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file declares the MachineIRBuilder class.
/// This is a helper class to build MachineInstr.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
#define LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Module.h"
namespace llvm {
// Forward declarations.
class MachineFunction;
class MachineInstr;
class TargetInstrInfo;
class GISelChangeObserver;
/// Class which stores all the state required in a MachineIRBuilder.
/// Since MachineIRBuilders will only store state in this object, it allows
/// to transfer BuilderState between different kinds of MachineIRBuilders.
struct MachineIRBuilderState {
/// MachineFunction under construction.
MachineFunction *MF = nullptr;
/// Information used to access the description of the opcodes.
const TargetInstrInfo *TII = nullptr;
/// Information used to verify types are consistent and to create virtual registers.
MachineRegisterInfo *MRI = nullptr;
/// Debug location to be set to any instruction we create.
DebugLoc DL;
/// \name Fields describing the insertion point.
/// @{
MachineBasicBlock *MBB = nullptr;
MachineBasicBlock::iterator II;
/// @}
GISelChangeObserver *Observer = nullptr;
GISelCSEInfo *CSEInfo = nullptr;
};
class DstOp {
union {
LLT LLTTy;
Register Reg;
const TargetRegisterClass *RC;
};
public:
enum class DstType { Ty_LLT, Ty_Reg, Ty_RC };
DstOp(unsigned R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(Register R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(DstType::Ty_Reg) {}
DstOp(const LLT T) : LLTTy(T), Ty(DstType::Ty_LLT) {}
DstOp(const TargetRegisterClass *TRC) : RC(TRC), Ty(DstType::Ty_RC) {}
void addDefToMIB(MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) const {
switch (Ty) {
case DstType::Ty_Reg:
MIB.addDef(Reg);
break;
case DstType::Ty_LLT:
MIB.addDef(MRI.createGenericVirtualRegister(LLTTy));
break;
case DstType::Ty_RC:
MIB.addDef(MRI.createVirtualRegister(RC));
break;
}
}
LLT getLLTTy(const MachineRegisterInfo &MRI) const {
switch (Ty) {
case DstType::Ty_RC:
return LLT{};
case DstType::Ty_LLT:
return LLTTy;
case DstType::Ty_Reg:
return MRI.getType(Reg);
}
llvm_unreachable("Unrecognised DstOp::DstType enum");
}
Register getReg() const {
assert(Ty == DstType::Ty_Reg && "Not a register");
return Reg;
}
const TargetRegisterClass *getRegClass() const {
switch (Ty) {
case DstType::Ty_RC:
return RC;
default:
llvm_unreachable("Not a RC Operand");
}
}
DstType getDstOpKind() const { return Ty; }
private:
DstType Ty;
};
class SrcOp {
union {
MachineInstrBuilder SrcMIB;
Register Reg;
CmpInst::Predicate Pred;
int64_t Imm;
};
public:
enum class SrcType { Ty_Reg, Ty_MIB, Ty_Predicate, Ty_Imm };
SrcOp(Register R) : Reg(R), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineInstrBuilder &MIB) : SrcMIB(MIB), Ty(SrcType::Ty_MIB) {}
SrcOp(const CmpInst::Predicate P) : Pred(P), Ty(SrcType::Ty_Predicate) {}
/// Use of registers held in unsigned integer variables (or more rarely signed
/// integers) is no longer permitted to avoid ambiguity with upcoming support
/// for immediates.
SrcOp(unsigned) = delete;
SrcOp(int) = delete;
SrcOp(uint64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
SrcOp(int64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
void addSrcToMIB(MachineInstrBuilder &MIB) const {
switch (Ty) {
case SrcType::Ty_Predicate:
MIB.addPredicate(Pred);
break;
case SrcType::Ty_Reg:
MIB.addUse(Reg);
break;
case SrcType::Ty_MIB:
MIB.addUse(SrcMIB->getOperand(0).getReg());
break;
case SrcType::Ty_Imm:
MIB.addImm(Imm);
break;
}
}
LLT getLLTTy(const MachineRegisterInfo &MRI) const {
switch (Ty) {
case SrcType::Ty_Predicate:
case SrcType::Ty_Imm:
llvm_unreachable("Not a register operand");
case SrcType::Ty_Reg:
return MRI.getType(Reg);
case SrcType::Ty_MIB:
return MRI.getType(SrcMIB->getOperand(0).getReg());
}
llvm_unreachable("Unrecognised SrcOp::SrcType enum");
}
Register getReg() const {
switch (Ty) {
case SrcType::Ty_Predicate:
case SrcType::Ty_Imm:
llvm_unreachable("Not a register operand");
case SrcType::Ty_Reg:
return Reg;
case SrcType::Ty_MIB:
return SrcMIB->getOperand(0).getReg();
}
llvm_unreachable("Unrecognised SrcOp::SrcType enum");
}
CmpInst::Predicate getPredicate() const {
switch (Ty) {
case SrcType::Ty_Predicate:
return Pred;
default:
llvm_unreachable("Not a register operand");
}
}
int64_t getImm() const {
switch (Ty) {
case SrcType::Ty_Imm:
return Imm;
default:
llvm_unreachable("Not an immediate");
}
}
SrcType getSrcOpKind() const { return Ty; }
private:
SrcType Ty;
};
class FlagsOp {
Optional<unsigned> Flags;
public:
explicit FlagsOp(unsigned F) : Flags(F) {}
FlagsOp() : Flags(None) {}
Optional<unsigned> getFlags() const { return Flags; }
};
/// Helper class to build MachineInstr.
/// It keeps internally the insertion point and debug location for all
/// the new instructions we want to create.
/// This information can be modify via the related setters.
class MachineIRBuilder {
MachineIRBuilderState State;
protected:
void validateTruncExt(const LLT Dst, const LLT Src, bool IsExtend);
void validateUnaryOp(const LLT Res, const LLT Op0);
void validateBinaryOp(const LLT Res, const LLT Op0, const LLT Op1);
void validateShiftOp(const LLT Res, const LLT Op0, const LLT Op1);
void validateSelectOp(const LLT ResTy, const LLT TstTy, const LLT Op0Ty,
const LLT Op1Ty);
void recordInsertion(MachineInstr *InsertedInstr) const {
if (State.Observer)
State.Observer->createdInstr(*InsertedInstr);
}
public:
/// Some constructors for easy use.
MachineIRBuilder() = default;
MachineIRBuilder(MachineFunction &MF) { setMF(MF); }
MachineIRBuilder(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt) {
setMF(*MBB.getParent());
setInsertPt(MBB, InsPt);
}
MachineIRBuilder(MachineInstr &MI) :
MachineIRBuilder(*MI.getParent(), MI.getIterator()) {
setInstr(MI);
setDebugLoc(MI.getDebugLoc());
}
MachineIRBuilder(MachineInstr &MI, GISelChangeObserver &Observer) :
MachineIRBuilder(MI) {
setChangeObserver(Observer);
}
virtual ~MachineIRBuilder() = default;
MachineIRBuilder(const MachineIRBuilderState &BState) : State(BState) {}
const TargetInstrInfo &getTII() {
assert(State.TII && "TargetInstrInfo is not set");
return *State.TII;
}
/// Getter for the function we currently build.
MachineFunction &getMF() {
assert(State.MF && "MachineFunction is not set");
return *State.MF;
}
const MachineFunction &getMF() const {
assert(State.MF && "MachineFunction is not set");
return *State.MF;
}
const DataLayout &getDataLayout() const {
return getMF().getFunction().getParent()->getDataLayout();
}
/// Getter for DebugLoc
const DebugLoc &getDL() { return State.DL; }
/// Getter for MRI
MachineRegisterInfo *getMRI() { return State.MRI; }
const MachineRegisterInfo *getMRI() const { return State.MRI; }
/// Getter for the State
MachineIRBuilderState &getState() { return State; }
/// Getter for the basic block we currently build.
const MachineBasicBlock &getMBB() const {
assert(State.MBB && "MachineBasicBlock is not set");
return *State.MBB;
}
MachineBasicBlock &getMBB() {
return const_cast<MachineBasicBlock &>(
const_cast<const MachineIRBuilder *>(this)->getMBB());
}
GISelCSEInfo *getCSEInfo() { return State.CSEInfo; }
const GISelCSEInfo *getCSEInfo() const { return State.CSEInfo; }
/// Current insertion point for new instructions.
MachineBasicBlock::iterator getInsertPt() { return State.II; }
/// Set the insertion point before the specified position.
/// \pre MBB must be in getMF().
/// \pre II must be a valid iterator in MBB.
void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II) {
assert(MBB.getParent() == &getMF() &&
"Basic block is in a different function");
State.MBB = &MBB;
State.II = II;
}
/// @}
void setCSEInfo(GISelCSEInfo *Info) { State.CSEInfo = Info; }
/// \name Setters for the insertion point.
/// @{
/// Set the MachineFunction where to build instructions.
void setMF(MachineFunction &MF);
/// Set the insertion point to the end of \p MBB.
/// \pre \p MBB must be contained by getMF().
void setMBB(MachineBasicBlock &MBB) {
State.MBB = &MBB;
State.II = MBB.end();
assert(&getMF() == MBB.getParent() &&
"Basic block is in a different function");
}
/// Set the insertion point to before MI.
/// \pre MI must be in getMF().
void setInstr(MachineInstr &MI) {
assert(MI.getParent() && "Instruction is not part of a basic block");
setMBB(*MI.getParent());
State.II = MI.getIterator();
}
/// @}
/// Set the insertion point to before MI, and set the debug loc to MI's loc.
/// \pre MI must be in getMF().
void setInstrAndDebugLoc(MachineInstr &MI) {
setInstr(MI);
setDebugLoc(MI.getDebugLoc());
}
void setChangeObserver(GISelChangeObserver &Observer) {
State.Observer = &Observer;
}
void stopObservingChanges() { State.Observer = nullptr; }
/// @}
/// Set the debug location to \p DL for all the next build instructions.
void setDebugLoc(const DebugLoc &DL) { this->State.DL = DL; }
/// Get the current instruction's debug location.
DebugLoc getDebugLoc() { return State.DL; }
/// Build and insert <empty> = \p Opcode <empty>.
/// The insertion point is the one set by the last call of either
/// setBasicBlock or setMI.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildInstr(unsigned Opcode) {
return insertInstr(buildInstrNoInsert(Opcode));
}
/// Build but don't insert <empty> = \p Opcode <empty>.
///
/// \pre setMF, setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildInstrNoInsert(unsigned Opcode);
/// Insert an existing instruction at the insertion point.
MachineInstrBuilder insertInstr(MachineInstrBuilder MIB);
/// Build and insert a DBG_VALUE instruction expressing the fact that the
/// associated \p Variable lives in \p Reg (suitably modified by \p Expr).
MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_VALUE instruction expressing the fact that the
/// associated \p Variable lives in memory at \p Reg (suitably modified by \p
/// Expr).
MachineInstrBuilder buildIndirectDbgValue(Register Reg,
const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_VALUE instruction expressing the fact that the
/// associated \p Variable lives in the stack slot specified by \p FI
/// (suitably modified by \p Expr).
MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_VALUE instructions specifying that \p Variable is
/// given by \p C (suitably modified by \p Expr).
MachineInstrBuilder buildConstDbgValue(const Constant &C,
const MDNode *Variable,
const MDNode *Expr);
/// Build and insert a DBG_LABEL instructions specifying that \p Label is
/// given. Convert "llvm.dbg.label Label" to "DBG_LABEL Label".
MachineInstrBuilder buildDbgLabel(const MDNode *Label);
/// Build and insert \p Res = G_DYN_STACKALLOC \p Size, \p Align
///
/// G_DYN_STACKALLOC does a dynamic stack allocation and writes the address of
/// the allocated memory into \p Res.
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size,
Align Alignment);
/// Build and insert \p Res = G_FRAME_INDEX \p Idx
///
/// G_FRAME_INDEX materializes the address of an alloca value or other
/// stack-based object.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx);
/// Build and insert \p Res = G_GLOBAL_VALUE \p GV
///
/// G_GLOBAL_VALUE materializes the address of the specified global
/// into \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with pointer type
/// in the same address space as \p GV.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV);
/// Build and insert \p Res = G_PTR_ADD \p Op0, \p Op1
///
/// G_PTR_ADD adds \p Op1 addressible units to the pointer specified by \p Op0,
/// storing the resulting pointer in \p Res. Addressible units are typically
/// bytes but this can vary between targets.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Op0 must be generic virtual registers with pointer
/// type.
/// \pre \p Op1 must be a generic virtual register with scalar type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0,
const SrcOp &Op1);
/// Materialize and insert \p Res = G_PTR_ADD \p Op0, (G_CONSTANT \p Value)
///
/// G_PTR_ADD adds \p Value bytes to the pointer specified by \p Op0,
/// storing the resulting pointer in \p Res. If \p Value is zero then no
/// G_PTR_ADD or G_CONSTANT will be created and \pre Op0 will be assigned to
/// \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Op0 must be a generic virtual register with pointer type.
/// \pre \p ValueTy must be a scalar type.
/// \pre \p Res must be 0. This is to detect confusion between
/// materializePtrAdd() and buildPtrAdd().
/// \post \p Res will either be a new generic virtual register of the same
/// type as \p Op0 or \p Op0 itself.
///
/// \return a MachineInstrBuilder for the newly created instruction.
Optional<MachineInstrBuilder> materializePtrAdd(Register &Res, Register Op0,
const LLT ValueTy,
uint64_t Value);
/// Build and insert \p Res = G_PTRMASK \p Op0, \p Op1
MachineInstrBuilder buildPtrMask(const DstOp &Res, const SrcOp &Op0,
const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_PTRMASK, {Res}, {Op0, Op1});
}
/// Build and insert \p Res = G_PTRMASK \p Op0, \p G_CONSTANT (1 << NumBits) - 1
///
/// This clears the low bits of a pointer operand without destroying its
/// pointer properties. This has the effect of rounding the address *down* to
/// a specified alignment in bits.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Op0 must be generic virtual registers with pointer
/// type.
/// \pre \p NumBits must be an integer representing the number of low bits to
/// be cleared in \p Op0.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0,
uint32_t NumBits);
/// Build and insert \p Res, \p CarryOut = G_UADDO \p Op0, \p Op1
///
/// G_UADDO sets \p Res to \p Op0 + \p Op1 (truncated to the bit width) and
/// sets \p CarryOut to 1 if the result overflowed in unsigned arithmetic.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers with the
/// same scalar type.
////\pre \p CarryOut must be generic virtual register with scalar type
///(typically s1)
///
/// \return The newly created instruction.
MachineInstrBuilder buildUAddo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_UADDO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_USUBO \p Op0, \p Op1
MachineInstrBuilder buildUSubo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_USUBO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_SADDO \p Op0, \p Op1
MachineInstrBuilder buildSAddo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_SADDO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_SUBO \p Op0, \p Op1
MachineInstrBuilder buildSSubo(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_SSUBO, {Res, CarryOut}, {Op0, Op1});
}
/// Build and insert \p Res, \p CarryOut = G_UADDE \p Op0,
/// \p Op1, \p CarryIn
///
/// G_UADDE sets \p Res to \p Op0 + \p Op1 + \p CarryIn (truncated to the bit
/// width) and sets \p CarryOut to 1 if the result overflowed in unsigned
/// arithmetic.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same scalar type.
/// \pre \p CarryOut and \p CarryIn must be generic virtual
/// registers with the same scalar type (typically s1)
///
/// \return The newly created instruction.
MachineInstrBuilder buildUAdde(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_UADDE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res, \p CarryOut = G_USUBE \p Op0, \p Op1, \p CarryInp
MachineInstrBuilder buildUSube(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_USUBE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res, \p CarryOut = G_SADDE \p Op0, \p Op1, \p CarryInp
MachineInstrBuilder buildSAdde(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_SADDE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res, \p CarryOut = G_SSUBE \p Op0, \p Op1, \p CarryInp
MachineInstrBuilder buildSSube(const DstOp &Res, const DstOp &CarryOut,
const SrcOp &Op0, const SrcOp &Op1,
const SrcOp &CarryIn) {
return buildInstr(TargetOpcode::G_SSUBE, {Res, CarryOut},
{Op0, Op1, CarryIn});
}
/// Build and insert \p Res = G_ANYEXT \p Op0
///
/// G_ANYEXT produces a register of the specified width, with bits 0 to
/// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are unspecified
/// (i.e. this is neither zero nor sign-extension). For a vector register,
/// each element is extended individually.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be smaller than \p Res
///
/// \return The newly created instruction.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_SEXT \p Op
///
/// G_SEXT produces a register of the specified width, with bits 0 to
/// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are duplicated from the
/// high bit of \p Op (i.e. 2s-complement sign extended).
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be smaller than \p Res
///
/// \return The newly created instruction.
MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_SEXT_INREG \p Op, ImmOp
MachineInstrBuilder buildSExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp) {
return buildInstr(TargetOpcode::G_SEXT_INREG, {Res}, {Op, SrcOp(ImmOp)});
}
/// Build and insert \p Res = G_FPEXT \p Op
MachineInstrBuilder buildFPExt(const DstOp &Res, const SrcOp &Op,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FPEXT, {Res}, {Op}, Flags);
}
/// Build and insert a G_PTRTOINT instruction.
MachineInstrBuilder buildPtrToInt(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_PTRTOINT, {Dst}, {Src});
}
/// Build and insert a G_INTTOPTR instruction.
MachineInstrBuilder buildIntToPtr(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_INTTOPTR, {Dst}, {Src});
}
/// Build and insert \p Dst = G_BITCAST \p Src
MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_BITCAST, {Dst}, {Src});
}
/// Build and insert \p Dst = G_ADDRSPACE_CAST \p Src
MachineInstrBuilder buildAddrSpaceCast(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_ADDRSPACE_CAST, {Dst}, {Src});
}
/// \return The opcode of the extension the target wants to use for boolean
/// values.
unsigned getBoolExtOp(bool IsVec, bool IsFP) const;
// Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_SEXT \p Op, or \p Res
// = G_ZEXT \p Op depending on how the target wants to extend boolean values.
MachineInstrBuilder buildBoolExt(const DstOp &Res, const SrcOp &Op,
bool IsFP);
/// Build and insert \p Res = G_ZEXT \p Op
///
/// G_ZEXT produces a register of the specified width, with bits 0 to
/// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are 0. For a vector
/// register, each element is extended individually.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be smaller than \p Res
///
/// \return The newly created instruction.
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_SEXT \p Op, \p Res = G_TRUNC \p Op, or
/// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = G_ZEXT \p Op, \p Res = G_TRUNC \p Op, or
/// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op);
// Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_TRUNC \p Op, or
/// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op);
/// Build and insert \p Res = \p ExtOpc, \p Res = G_TRUNC \p
/// Op, or \p Res = COPY \p Op depending on the differing sizes of \p Res and
/// \p Op.
/// ///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res,
const SrcOp &Op);
/// Build and insert an appropriate cast between two registers of equal size.
MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src);
/// Build and insert G_BR \p Dest
///
/// G_BR is an unconditional branch to \p Dest.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBr(MachineBasicBlock &Dest);
/// Build and insert G_BRCOND \p Tst, \p Dest
///
/// G_BRCOND is a conditional branch to \p Dest.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Tst must be a generic virtual register with scalar
/// type. At the beginning of legalization, this will be a single
/// bit (s1). Targets with interesting flags registers may change
/// this. For a wider type, whether the branch is taken must only
/// depend on bit 0 (for now).
///
/// \return The newly created instruction.
MachineInstrBuilder buildBrCond(const SrcOp &Tst, MachineBasicBlock &Dest);
/// Build and insert G_BRINDIRECT \p Tgt
///
/// G_BRINDIRECT is an indirect branch to \p Tgt.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Tgt must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBrIndirect(Register Tgt);
/// Build and insert G_BRJT \p TablePtr, \p JTI, \p IndexReg
///
/// G_BRJT is a jump table branch using a table base pointer \p TablePtr,
/// jump table index \p JTI and index \p IndexReg
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p TablePtr must be a generic virtual register with pointer type.
/// \pre \p JTI must be be a jump table index.
/// \pre \p IndexReg must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI,
Register IndexReg);
/// Build and insert \p Res = G_CONSTANT \p Val
///
/// G_CONSTANT is an integer constant with the specified size and value. \p
/// Val will be extended or truncated to the size of \p Reg.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or pointer
/// type.
///
/// \return The newly created instruction.
virtual MachineInstrBuilder buildConstant(const DstOp &Res,
const ConstantInt &Val);
/// Build and insert \p Res = G_CONSTANT \p Val
///
/// G_CONSTANT is an integer constant with the specified size and value.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildConstant(const DstOp &Res, int64_t Val);
MachineInstrBuilder buildConstant(const DstOp &Res, const APInt &Val);
/// Build and insert \p Res = G_FCONSTANT \p Val
///
/// G_FCONSTANT is a floating-point constant with the specified size and
/// value.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar type.
///
/// \return The newly created instruction.
virtual MachineInstrBuilder buildFConstant(const DstOp &Res,
const ConstantFP &Val);
MachineInstrBuilder buildFConstant(const DstOp &Res, double Val);
MachineInstrBuilder buildFConstant(const DstOp &Res, const APFloat &Val);
/// Build and insert \p Res = COPY Op
///
/// Register-to-register COPY sets \p Res to \p Op.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op);
/// Build and insert `Res = G_LOAD Addr, MMO`.
///
/// Loads the value stored at \p Addr. Puts the result in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr,
MachineMemOperand &MMO) {
return buildLoadInstr(TargetOpcode::G_LOAD, Res, Addr, MMO);
}
/// Build and insert a G_LOAD instruction, while constructing the
/// MachineMemOperand.
MachineInstrBuilder
buildLoad(const DstOp &Res, const SrcOp &Addr, MachinePointerInfo PtrInfo,
Align Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
/// Build and insert `Res = <opcode> Addr, MMO`.
///
/// Loads the value stored at \p Addr. Puts the result in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res,
const SrcOp &Addr, MachineMemOperand &MMO);
/// Helper to create a load from a constant offset given a base address. Load
/// the type of \p Dst from \p Offset from the given base address and memory
/// operand.
MachineInstrBuilder buildLoadFromOffset(const DstOp &Dst,
const SrcOp &BasePtr,
MachineMemOperand &BaseMMO,
int64_t Offset);
/// Build and insert `G_STORE Val, Addr, MMO`.
///
/// Stores the value \p Val to \p Addr.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Val must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr,
MachineMemOperand &MMO);
/// Build and insert a G_STORE instruction, while constructing the
/// MachineMemOperand.
MachineInstrBuilder
buildStore(const SrcOp &Val, const SrcOp &Addr, MachinePointerInfo PtrInfo,
Align Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
/// Build and insert `Res0, ... = G_EXTRACT Src, Idx0`.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Src must be generic virtual registers.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index);
/// Build and insert \p Res = IMPLICIT_DEF.
MachineInstrBuilder buildUndef(const DstOp &Res);
/// Build and insert instructions to put \p Ops together at the specified p
/// Indices to form a larger register.
///
/// If the types of the input registers are uniform and cover the entirity of
/// \p Res then a G_MERGE_VALUES will be produced. Otherwise an IMPLICIT_DEF
/// followed by a sequence of G_INSERT instructions.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The final element of the sequence must not extend past the end of the
/// destination register.
/// \pre The bits defined by each Op (derived from index and scalar size) must
/// not overlap.
/// \pre \p Indices must be in ascending order of bit position.
void buildSequence(Register Res, ArrayRef<Register> Ops,
ArrayRef<uint64_t> Indices);
/// Build and insert \p Res = G_MERGE_VALUES \p Op0, ...
///
/// G_MERGE_VALUES combines the input elements contiguously into a larger
/// register.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the input
/// registers.
/// \pre The type of all \p Ops registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildMerge(const DstOp &Res, ArrayRef<Register> Ops);
MachineInstrBuilder buildMerge(const DstOp &Res,
std::initializer_list<SrcOp> Ops);
/// Build and insert \p Res0, ... = G_UNMERGE_VALUES \p Op
///
/// G_UNMERGE_VALUES splits contiguous bits of the input into multiple
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the input
/// registers.
/// \pre The type of all \p Res registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildUnmerge(ArrayRef<LLT> Res, const SrcOp &Op);
MachineInstrBuilder buildUnmerge(ArrayRef<Register> Res, const SrcOp &Op);
/// Build and insert an unmerge of \p Res sized pieces to cover \p Op
MachineInstrBuilder buildUnmerge(LLT Res, const SrcOp &Op);
/// Build and insert \p Res = G_BUILD_VECTOR \p Op0, ...
///
/// G_BUILD_VECTOR creates a vector value from multiple scalar registers.
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the
/// input scalar registers.
/// \pre The type of all \p Ops registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBuildVector(const DstOp &Res,
ArrayRef<Register> Ops);
/// Build and insert \p Res = G_BUILD_VECTOR with \p Src replicated to fill
/// the number of elements
MachineInstrBuilder buildSplatVector(const DstOp &Res,
const SrcOp &Src);
/// Build and insert \p Res = G_BUILD_VECTOR_TRUNC \p Op0, ...
///
/// G_BUILD_VECTOR_TRUNC creates a vector value from multiple scalar registers
/// which have types larger than the destination vector element type, and
/// truncates the values to fit.
///
/// If the operands given are already the same size as the vector elt type,
/// then this method will instead create a G_BUILD_VECTOR instruction.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The type of all \p Ops registers must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildBuildVectorTrunc(const DstOp &Res,
ArrayRef<Register> Ops);
/// Build and insert a vector splat of a scalar \p Src using a
/// G_INSERT_VECTOR_ELT and G_SHUFFLE_VECTOR idiom.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Src must have the same type as the element type of \p Dst
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildShuffleSplat(const DstOp &Res, const SrcOp &Src);
/// Build and insert \p Res = G_SHUFFLE_VECTOR \p Src1, \p Src2, \p Mask
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildShuffleVector(const DstOp &Res, const SrcOp &Src1,
const SrcOp &Src2, ArrayRef<int> Mask);
/// Build and insert \p Res = G_CONCAT_VECTORS \p Op0, ...
///
/// G_CONCAT_VECTORS creates a vector from the concatenation of 2 or more
/// vectors.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre The entire register \p Res (and no more) must be covered by the input
/// registers.
/// \pre The type of all source operands must be identical.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildConcatVectors(const DstOp &Res,
ArrayRef<Register> Ops);
MachineInstrBuilder buildInsert(const DstOp &Res, const SrcOp &Src,
const SrcOp &Op, unsigned Index);
/// Build and insert either a G_INTRINSIC (if \p HasSideEffects is false) or
/// G_INTRINSIC_W_SIDE_EFFECTS instruction. Its first operand will be the
/// result register definition unless \p Reg is NoReg (== 0). The second
/// operand will be the intrinsic's ID.
///
/// Callers are expected to add the required definitions and uses afterwards.
///
/// \pre setBasicBlock or setMI must have been called.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<Register> Res,
bool HasSideEffects);
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<DstOp> Res,
bool HasSideEffects);
/// Build and insert \p Res = G_FPTRUNC \p Op
///
/// G_FPTRUNC converts a floating-point value into one with a smaller type.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Res must be smaller than \p Op
///
/// \return The newly created instruction.
MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op,
Optional<unsigned> Flags = None);
/// Build and insert \p Res = G_TRUNC \p Op
///
/// G_TRUNC extracts the low bits of a type. For a vector type each element is
/// truncated independently before being packed into the destination.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or vector type.
/// \pre \p Op must be a generic virtual register with scalar or vector type.
/// \pre \p Res must be smaller than \p Op
///
/// \return The newly created instruction.
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op);
/// Build and insert a \p Res = G_ICMP \p Pred, \p Op0, \p Op1
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or
/// vector type. Typically this starts as s1 or <N x s1>.
/// \pre \p Op0 and Op1 must be generic virtual registers with the
/// same number of elements as \p Res. If \p Res is a scalar,
/// \p Op0 must be either a scalar or pointer.
/// \pre \p Pred must be an integer predicate.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res,
const SrcOp &Op0, const SrcOp &Op1);
/// Build and insert a \p Res = G_FCMP \p Pred\p Op0, \p Op1
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar or
/// vector type. Typically this starts as s1 or <N x s1>.
/// \pre \p Op0 and Op1 must be generic virtual registers with the
/// same number of elements as \p Res (or scalar, if \p Res is
/// scalar).
/// \pre \p Pred must be a floating-point predicate.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res,
const SrcOp &Op0, const SrcOp &Op1,
Optional<unsigned> Flags = None);
/// Build and insert a \p Res = G_SELECT \p Tst, \p Op0, \p Op1
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same type.
/// \pre \p Tst must be a generic virtual register with scalar, pointer or
/// vector type. If vector then it must have the same number of
/// elements as the other parameters.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst,
const SrcOp &Op0, const SrcOp &Op1,
Optional<unsigned> Flags = None);
/// Build and insert \p Res = G_INSERT_VECTOR_ELT \p Val,
/// \p Elt, \p Idx
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res and \p Val must be a generic virtual register
// with the same vector type.
/// \pre \p Elt and \p Idx must be a generic virtual register
/// with scalar type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildInsertVectorElement(const DstOp &Res,
const SrcOp &Val,
const SrcOp &Elt,
const SrcOp &Idx);
/// Build and insert \p Res = G_EXTRACT_VECTOR_ELT \p Val, \p Idx
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register with scalar type.
/// \pre \p Val must be a generic virtual register with vector type.
/// \pre \p Idx must be a generic virtual register with scalar type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildExtractVectorElement(const DstOp &Res,
const SrcOp &Val,
const SrcOp &Idx);
/// Build and insert `OldValRes<def>, SuccessRes<def> =
/// G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr, CmpVal, NewVal, MMO`.
///
/// Atomically replace the value at \p Addr with \p NewVal if it is currently
/// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
/// Addr in \p Res, along with an s1 indicating whether it was replaced.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register of scalar type.
/// \pre \p SuccessRes must be a generic virtual register of scalar type. It
/// will be assigned 0 on failure and 1 on success.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
/// registers of the same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder
buildAtomicCmpXchgWithSuccess(Register OldValRes, Register SuccessRes,
Register Addr, Register CmpVal, Register NewVal,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMIC_CMPXCHG Addr, CmpVal, NewVal,
/// MMO`.
///
/// Atomically replace the value at \p Addr with \p NewVal if it is currently
/// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
/// Addr in \p Res.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register of scalar type.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
/// registers of the same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicCmpXchg(Register OldValRes, Register Addr,
Register CmpVal, Register NewVal,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_<Opcode> Addr, Val, MMO`.
///
/// Atomically read-modify-update the value at \p Addr with \p Val. Puts the
/// original value from \p Addr in \p OldValRes. The modification is
/// determined by the opcode.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes,
const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_XCHG Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with \p Val. Puts the original
/// value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWXchg(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_ADD Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the addition of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWAdd(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_SUB Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the subtraction of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWSub(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_AND Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise and of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWAnd(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_NAND Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise nand of \p Val
/// and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWNand(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_OR Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise or of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWOr(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_XOR Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the bitwise xor of \p Val and
/// the original value. Puts the original value from \p Addr in \p OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWXor(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_MAX Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the signed maximum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWMax(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_MIN Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the signed minimum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWMin(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_UMAX Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the unsigned maximum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWUmax(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_UMIN Addr, Val, MMO`.
///
/// Atomically replace the value at \p Addr with the unsigned minimum of \p
/// Val and the original value. Puts the original value from \p Addr in \p
/// OldValRes.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p OldValRes must be a generic virtual register.
/// \pre \p Addr must be a generic virtual register with pointer type.
/// \pre \p OldValRes, and \p Val must be generic virtual registers of the
/// same type.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAtomicRMWUmin(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_FADD Addr, Val, MMO`.
MachineInstrBuilder buildAtomicRMWFAdd(
const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO);
/// Build and insert `OldValRes<def> = G_ATOMICRMW_FSUB Addr, Val, MMO`.
MachineInstrBuilder buildAtomicRMWFSub(
const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO);
/// Build and insert `G_FENCE Ordering, Scope`.
MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope);
/// Build and insert \p Dst = G_FREEZE \p Src
MachineInstrBuilder buildFreeze(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_FREEZE, {Dst}, {Src});
}
/// Build and insert \p Res = G_BLOCK_ADDR \p BA
///
/// G_BLOCK_ADDR computes the address of a basic block.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res must be a generic virtual register of a pointer type.
///
/// \return The newly created instruction.
MachineInstrBuilder buildBlockAddress(Register Res, const BlockAddress *BA);
/// Build and insert \p Res = G_ADD \p Op0, \p Op1
///
/// G_ADD sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
/// truncated to their width.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_ADD, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_SUB \p Op0, \p Op1
///
/// G_SUB sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
/// truncated to their width.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildSub(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_SUB, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_MUL \p Op0, \p Op1
///
/// G_MUL sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
/// truncated to their width.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_MUL, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildUMulH(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_UMULH, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildSMulH(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_SMULH, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMul(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMUL, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMinNum(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMINNUM, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMaxNum(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMAXNUM, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMinNumIEEE(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMINNUM_IEEE, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildFMaxNumIEEE(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMAXNUM_IEEE, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_SHL, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_LSHR, {Dst}, {Src0, Src1}, Flags);
}
MachineInstrBuilder buildAShr(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_ASHR, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_AND \p Op0, \p Op1
///
/// G_AND sets \p Res to the bitwise and of integer parameters \p Op0 and \p
/// Op1.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_AND, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_OR \p Op0, \p Op1
///
/// G_OR sets \p Res to the bitwise or of integer parameters \p Op0 and \p
/// Op1.
///
/// \pre setBasicBlock or setMI must have been called.
/// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
/// with the same (scalar or vector) type).
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_OR, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_XOR \p Op0, \p Op1
MachineInstrBuilder buildXor(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, Src1});
}
/// Build and insert a bitwise not,
/// \p NegOne = G_CONSTANT -1
/// \p Res = G_OR \p Op0, NegOne
MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0) {
auto NegOne = buildConstant(Dst.getLLTTy(*getMRI()), -1);
return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, NegOne});
}
/// Build and insert \p Res = G_CTPOP \p Op0, \p Src0
MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTPOP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTLZ \p Op0, \p Src0
MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTLZ, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTLZ_ZERO_UNDEF \p Op0, \p Src0
MachineInstrBuilder buildCTLZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTTZ \p Op0, \p Src0
MachineInstrBuilder buildCTTZ(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTTZ, {Dst}, {Src0});
}
/// Build and insert \p Res = G_CTTZ_ZERO_UNDEF \p Op0, \p Src0
MachineInstrBuilder buildCTTZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Dst}, {Src0});
}
/// Build and insert \p Dst = G_BSWAP \p Src0
MachineInstrBuilder buildBSwap(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_BSWAP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_FADD \p Op0, \p Op1
MachineInstrBuilder buildFAdd(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FADD, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FSUB \p Op0, \p Op1
MachineInstrBuilder buildFSub(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FSUB, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FDIV \p Op0, \p Op1
MachineInstrBuilder buildFDiv(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FDIV, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FMA \p Op0, \p Op1, \p Op2
MachineInstrBuilder buildFMA(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1, const SrcOp &Src2,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMA, {Dst}, {Src0, Src1, Src2}, Flags);
}
/// Build and insert \p Res = G_FMAD \p Op0, \p Op1, \p Op2
MachineInstrBuilder buildFMAD(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1, const SrcOp &Src2,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FMAD, {Dst}, {Src0, Src1, Src2}, Flags);
}
/// Build and insert \p Res = G_FNEG \p Op0
MachineInstrBuilder buildFNeg(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FNEG, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Res = G_FABS \p Op0
MachineInstrBuilder buildFAbs(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FABS, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Dst = G_FCANONICALIZE \p Src0
MachineInstrBuilder buildFCanonicalize(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FCANONICALIZE, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Dst = G_INTRINSIC_TRUNC \p Src0
MachineInstrBuilder buildIntrinsicTrunc(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Res = GFFLOOR \p Op0, \p Op1
MachineInstrBuilder buildFFloor(const DstOp &Dst, const SrcOp &Src0,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FFLOOR, {Dst}, {Src0}, Flags);
}
/// Build and insert \p Dst = G_FLOG \p Src
MachineInstrBuilder buildFLog(const DstOp &Dst, const SrcOp &Src,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FLOG, {Dst}, {Src}, Flags);
}
/// Build and insert \p Dst = G_FLOG2 \p Src
MachineInstrBuilder buildFLog2(const DstOp &Dst, const SrcOp &Src,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FLOG2, {Dst}, {Src}, Flags);
}
/// Build and insert \p Dst = G_FEXP2 \p Src
MachineInstrBuilder buildFExp2(const DstOp &Dst, const SrcOp &Src,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FEXP2, {Dst}, {Src}, Flags);
}
/// Build and insert \p Dst = G_FPOW \p Src0, \p Src1
MachineInstrBuilder buildFPow(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1,
Optional<unsigned> Flags = None) {
return buildInstr(TargetOpcode::G_FPOW, {Dst}, {Src0, Src1}, Flags);
}
/// Build and insert \p Res = G_FCOPYSIGN \p Op0, \p Op1
MachineInstrBuilder buildFCopysign(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_FCOPYSIGN, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_UITOFP \p Src0
MachineInstrBuilder buildUITOFP(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_UITOFP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_SITOFP \p Src0
MachineInstrBuilder buildSITOFP(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_SITOFP, {Dst}, {Src0});
}
/// Build and insert \p Res = G_FPTOUI \p Src0
MachineInstrBuilder buildFPTOUI(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_FPTOUI, {Dst}, {Src0});
}
/// Build and insert \p Res = G_FPTOSI \p Src0
MachineInstrBuilder buildFPTOSI(const DstOp &Dst, const SrcOp &Src0) {
return buildInstr(TargetOpcode::G_FPTOSI, {Dst}, {Src0});
}
/// Build and insert \p Res = G_SMIN \p Op0, \p Op1
MachineInstrBuilder buildSMin(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_SMIN, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_SMAX \p Op0, \p Op1
MachineInstrBuilder buildSMax(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_SMAX, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_UMIN \p Op0, \p Op1
MachineInstrBuilder buildUMin(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_UMIN, {Dst}, {Src0, Src1});
}
/// Build and insert \p Res = G_UMAX \p Op0, \p Op1
MachineInstrBuilder buildUMax(const DstOp &Dst, const SrcOp &Src0,
const SrcOp &Src1) {
return buildInstr(TargetOpcode::G_UMAX, {Dst}, {Src0, Src1});
}
/// Build and insert \p Dst = G_ABS \p Src
MachineInstrBuilder buildAbs(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_ABS, {Dst}, {Src});
}
/// Build and insert \p Res = G_JUMP_TABLE \p JTI
///
/// G_JUMP_TABLE sets \p Res to the address of the jump table specified by
/// the jump table index \p JTI.
///
/// \return a MachineInstrBuilder for the newly created instruction.
MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI);
/// Build and insert \p Res = G_VECREDUCE_SEQ_FADD \p ScalarIn, \p VecIn
///
/// \p ScalarIn is the scalar accumulator input to start the sequential
/// reduction operation of \p VecIn.
MachineInstrBuilder buildVecReduceSeqFAdd(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FADD, {Dst},
{ScalarIn, {VecIn}});
}
/// Build and insert \p Res = G_VECREDUCE_SEQ_FMUL \p ScalarIn, \p VecIn
///
/// \p ScalarIn is the scalar accumulator input to start the sequential
/// reduction operation of \p VecIn.
MachineInstrBuilder buildVecReduceSeqFMul(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FMUL, {Dst},
{ScalarIn, {VecIn}});
}
/// Build and insert \p Res = G_VECREDUCE_FADD \p Src
///
/// \p ScalarIn is the scalar accumulator input to the reduction operation of
/// \p VecIn.
MachineInstrBuilder buildVecReduceFAdd(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_FADD, {Dst}, {ScalarIn, VecIn});
}
/// Build and insert \p Res = G_VECREDUCE_FMUL \p Src
///
/// \p ScalarIn is the scalar accumulator input to the reduction operation of
/// \p VecIn.
MachineInstrBuilder buildVecReduceFMul(const DstOp &Dst,
const SrcOp &ScalarIn,
const SrcOp &VecIn) {
return buildInstr(TargetOpcode::G_VECREDUCE_FMUL, {Dst}, {ScalarIn, VecIn});
}
/// Build and insert \p Res = G_VECREDUCE_FMAX \p Src
MachineInstrBuilder buildVecReduceFMax(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_FMAX, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_FMIN \p Src
MachineInstrBuilder buildVecReduceFMin(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_FMIN, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_ADD \p Src
MachineInstrBuilder buildVecReduceAdd(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_ADD, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_MUL \p Src
MachineInstrBuilder buildVecReduceMul(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_MUL, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_AND \p Src
MachineInstrBuilder buildVecReduceAnd(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_AND, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_OR \p Src
MachineInstrBuilder buildVecReduceOr(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_OR, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_XOR \p Src
MachineInstrBuilder buildVecReduceXor(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_XOR, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_SMAX \p Src
MachineInstrBuilder buildVecReduceSMax(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_SMAX, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_SMIN \p Src
MachineInstrBuilder buildVecReduceSMin(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_SMIN, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_UMAX \p Src
MachineInstrBuilder buildVecReduceUMax(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_UMAX, {Dst}, {Src});
}
/// Build and insert \p Res = G_VECREDUCE_UMIN \p Src
MachineInstrBuilder buildVecReduceUMin(const DstOp &Dst, const SrcOp &Src) {
return buildInstr(TargetOpcode::G_VECREDUCE_UMIN, {Dst}, {Src});
}
virtual MachineInstrBuilder buildInstr(unsigned Opc, ArrayRef<DstOp> DstOps,
ArrayRef<SrcOp> SrcOps,
Optional<unsigned> Flags = None);
};
} // End namespace llvm.
#endif // LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H