
A Comparison of Fast-Recovery
Mechanisms in Networks

Implementation and Evaluation of Fast
Recovery Mechanisms in Mininet

Frederik Maaßen May 2022

Supervisor:
Univ.-Prof. Dr. Klaus-Tycho Förster
M. Sc. Alexander Puzicha

Technical University Dortmund
Faculty for Computer Science
Chair for Modelling and Simulation (LS-4)
http://ls4-www.cs.tu-dortmund.de

Abstract

The failure of links and devices in networks is a common occurrence for any network
administrator. As such modern networks implement global convergence protocols and
Fast Re-Routing (FRR) mechanisms to quickly restore connectivity. FRR mechanisms
tend to create sub-optimal paths containing unnecessary loops which increase latency,
disturb other data flows or create other adverse effects on the network until the slower
convergence protocol rewrites routings on the network. Fast Recovery Methods (FRM)
like ShortCut (Shukla and Foerster 2021) optimize existing FRR mechanisms by e.g.
removing existing loops in routings created by FRR. However, ShortCut has yet to be
tested in further detail. In this work we implement three topologies, a FRR mechanism
and ShortCut in a virtual network and run performance tests while introducing arti-
ficial failures to the network, evaluating the performance of these two methods. Our
results show that ShortCut reduces the effects of sub-optimal paths chosen by a FRR
mechanism and in some cases even restores pre-failure conditions on the network.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 State of the art . 2
1.3 Contribution . 2

2 Basics 5
2.1 Modern networks . 5
2.2 Failure scenarios in modern networks . 7

2.2.1 Failures in data centers . 7
2.3 Resilient routing in modern networks . 8

2.3.1 Traditional routing protocols by taking the example of OSPF . . 9
2.3.2 Security benefits and drawbacks of software-defined networks . 10
2.3.3 Resilience on the data plane . 10
2.3.4 Resilience on the control plane . 11
2.3.5 Fast Recovery Methods . 12

2.4 Creating a test environment . 14
2.4.1 Mininet . 15
2.4.2 Measuring performance . 16
2.4.3 Introducing failures . 18

3 Implementation 21
3.1 Implementation of a testing framework 21

3.1.1 Base components . 22
3.1.2 Routing configuration . 23
3.1.3 IP policy configuration . 23
3.1.4 Test configuration . 23
3.1.5 Implemented commands for measurements 24
3.1.6 Plotting functions . 27
3.1.7 Command line interface . 27

3.2 Fast Re-Routing . 28
3.3 ShortCut Implementation . 29

3.3.1 Identifying failures . 29
3.3.2 Implementation using nftables . 30

4 Testing 31
4.1 Topologies and Routing . 31

4.1.1 Minimum sized network . 31
4.1.2 Failure path topologies . 33

i

Contents

4.2 Measurements . 34
4.2.1 Bandwidth . 34
4.2.2 Latency . 34
4.2.3 Bandwidth link usage . 35
4.2.4 Packet flow . 35

4.3 Failures, FRR and FRMs . 36

5 Evaluation 37
5.1 Minimal network . 37

5.1.1 Bandwidth . 37
5.1.2 Bandwidth with concurrent data flow 41
5.1.3 Latency . 43
5.1.4 Packet flow - TCP . 45
5.1.5 Packet flow - UDP . 47

5.2 Failure path networks . 50
5.2.1 Bandwidth . 50
5.2.2 Bandwidth with concurrent data flow 50
5.2.3 Latency . 52
5.2.4 Packet flow - TCP . 54
5.2.5 Packet flow - UDP . 55

5.3 Discussion . 56
5.3.1 Bandwidth . 57
5.3.2 Bandwidth with concurrent data flow 57
5.3.3 Latency . 57
5.3.4 Packet flow . 57

6 Conclusion 59
6.1 Results of this work . 59
6.2 Future work . 59

6.2.1 Testing framework . 59
6.2.2 Measuring CPU usage of hosts in Mininet 60

Table of figures 62

Bibliography 63

Affidavit 67

ii

1
Introduction

In recent years, especially during the COVID-19 pandemic, network usage has risen ex-
ponentially. In Germany alone the per capita data usage on the terrestrial network has
risen from 98 GB per month in 2017 to 175 GB in 2020 (Bundesnetzagentur Deutschland
2021).

1.1 Motivation

A large part of the population suddenly had to spent additional time in their homes
which has contributed to this rise in data usage. But this development is not limited
to the pandemic. Data usage has been constantly rising due to the popularity of
streaming services, increased internet usage in daily life and the rising popularity of
cloud based services.
Because of the increased usage, failing networks cause an increasingly severe amount
of social and economic costs. This is why the reliability of networks is as important as
ever.
Failures in networks will always occur, be it through the failure of hardware, failures
caused by errors in software or human errors. In addition to this the maintenance
of networks will also regularly reduce a networks performance or cause the whole
network to be unavailable.
Network administrators use a multitude of ways to increase performance, reduce the
impact of failures on the network and achieve the highest possible availability and
reliability. Two of these methods include the usage of global convergence protocols
like Open Shortest Path First (OSPF) (Moy et al. 0004–1998) or similar methods, either
on the routers themselves or on a controller in a Software Defined Network (SDN), and
the usage of FRR (Chiesa et al. 2021) approaches.
The key difference between both is the time they take to become active. Because
FRR mechanisms only use the available data on the device they tend to take effect
near immediately. Global convergence protocols however are slow, sometimes even
taking seconds to converge (Liu et al. 2013). This is due to them collecting information
about the network by communicating with multiple devices, recomputing routes for
all affected parts of the network and deploying these flows on routers and switches.

1

Chapter 1 Introduction

Most of the FRR approaches will however create sub-optimal paths which may be
already in use or contain loops, effectively reducing the performance of the network.
FRMs like ShortCut (Shukla and Foerster 2021), Resilient Routing Layers (RRL) (Kvalbein
et al. 2005), Revive (Haque and Moyeen 2018) and Blink (Thomas Holterbach et al.
2019) try to alleviate this issue by removing longer paths from the routings only using
data available on the device, bridging the gap between FRR and the global convergence
protocol.

1.2 State of the art

Until the global convergence protocol converges it leaves the routing to In-network
methods like FRR which will reroute traffic according to pre-defined alternative routes
on the network. In some cases however methods like FRR cause routing paths to be
longer than necessary which produces additional traffic on the network and adds delay
to transmissions.
RRL pre-computes alternative routing tables, switching between routing tables in case
of failure, but needs to manipulate packets to inform routers of changed routing tables.
ShortCut uses information about the incoming packet to determine whether or not the
packet returned to the router, using already existing FRR implementations. In case a
packet returns it will remove the route with the highest priority from the routing table,
assuming that the path is no longer available.
Revive installs backup routes pro-actively using an optimized algorithm and con-
trollers, but is prone to loops created by alternative paths as failures are not propagated
to routers.
Blink uses Transmission Control Protocol (TCP) mechanisms to detect failures in TCP
flows on the network, but only works reactively, requiring the network to have already
failed before taking effect.
All of these FRMs are described in further detail in section 2.3.5.
Older FRMs have already been evaluated thoroughly and even though they do work
in theory they either have yet to see widespread implementation or face limitations
in their applicability, be it by requiring a high amount of resources or by using e.g.
packet manipulation, excluding networks which by structure are incompatible to such
mechanisms.

1.3 Contribution

We provide an introduction to the topic of modern networks, failure scenarios and
resilient routing.
In this context we use Mininet (Lantz, Bob and the Mininet Contributors 2021), a tool
to create virtual networks, to implement multiple topologies with routings. We then
implement a simple FRR mechanism, re-routing returning packets to an alternative
path.

2

1.3 Contribution

We implement ShortCut using nftables (Ayuso et al. 2019) and python 3.8 (van Rossum
and Drake 2009) that can be installed on any linux based router, and which is used for
testing.
We build a testing framework that can be used to automatically create Mininet topolo-
gies, formulate tests in python dictionaries using existing measurement functions,
set network wide bandwidth limits or delays and to run automatic sets of tests. The
framework can be called using an argument based Command Line Interface (CLI).
Using this framework we test several topologies with increasingly longer looped paths
using FRR with and without ShortCut. We discover that ShortCut is able to reduce
latency in our topologies by up to 30%, reduces the amount of packets forwarded on
the network by up to 38% for TCP transfers and up to 55% for User Datagram Protocol
(UDP) transfers and is able to remove bottlenecks created by concurrent data flows on
the looped paths, restoring the original functionality of the network.
The test framework, this thesis and all test results can be accessed on our Git repository
(Maaßen 05/2022).

3

2
Basics

Our work evaluates the effectiveness of fast recovery methods. In this context we ex-
plain software-defined networks in section 2.1, including controllers and their possible
applications. In section 2.2 we then elaborate on common failure scenarios and their
causes, for which we show measures network administrators take to alleviate secu-
rity concerns and achieve high reliability in section 2.3. These are split into different
levels of operation and put into perspective for the evaluation of a failure recovery
mechanism.
Lastly we provide an overview over our used technologies for testing in section 2.4,
including the evaluation criteria for a network, types of measurements we can perform
on the network and how artificial failures can be introduced to such a network.

2.1 Modern networks

In our digital society networks have become an essential infrastructure for countries
worldwide. A huge part of the population today is in some form reliant on the avail-
ability of networks and associated services, be it on their smartphone or their home
internet access. As such, the reliability of a network has a huge impact on the economy
and social life.
A study in 2015 (Montag et al. 2015) found that their participants used WhatsApp, a
messaging service, for around 32 minutes a day, with an overall usage mean of their
smartphone of around 162 minutes a day, mostly spent online. Private and commer-
cial users alike cause a huge amount of traffic. The german federal network agency
reported a per capita network usage on the terrestrial network of 175 GB per month
(Bundesnetzagentur Deutschland 2021) in Germany. The traffic per capita in 2017 was
at around 98 GB per month. Together with the rise of e.g. cloud based solutions for
companies, network requirements are expected to rise exponentially.
With bigger networks and higher traffic the work of a network administrator is getting
more complex by the day. Modern networks need to be flexible, scalable and reliable.
Configuration changes should be applied near instantly, failures should be corrected
as fast as possible and new components should only have to be connected to the
existing network, with all additional configuration being applied automatically or
only requiring a minimum amount of manual work.

5

Chapter 2 Basics

application plane

control plane

data plane

Applications

R1 R2

H1

H2

H3

H1

H2

H3

Controller

South-bound API

North-bound API

Figure 2.1: SDN network architecture

In the past many of the challenges a network faces in modern times were solved
by specialized networking devices which offered their own proprietary configuration
capabilities, including interfaces, protocols and software. In many cases this would
lead to companies using one supplier for the biggest part of their networks, as well as
huge amounts of manual labour configuring each device.
While many networks are still configured manually, the current trend strives towards
SDNs, taking complexity from single devices and instead using a component called
controller to handle logical operations (Rak and Hutchison 2020), like configuration of
new devices, the roll out of configuration changes and monitoring. This allows for a
better network management especially in networks with high availability constrains
and flexibility requirements e.g. the commercial network of an internet provider. Net-
work administrators receive a real time overview over the network, implement new
software controlled features on the fly or create virtual network environments. A cloud
provider could create automatic processes using a SDN controller to configure virtual
networks for a tenant in seconds.
In fig. 2.1 you can see a typical SDN architecture with the controller as a centralized
management component. It is connected to multiple networking devices like routers
and switches, and is able to read and write information to these devices. Several
protocols can be used to affect routers and switches. Some vendors have their own
proprietary protocols, while some protocols follow open specifications like OpenFlow
and Open Virtual Switch Database (OVSDB). They allow the controller to communicate
with the networking devices via their so called south-bound api.
In a network with an OpenFlow controller, routers use flow tables for routing. These
contain information provided by the controller about the destination of specific packets,
identified by a set of rules. If a packet enters the router for which no flow table entry
matches, the "table-miss" flow entry is hit and the packet is sent to the controller. The

6

2.2 Failure scenarios in modern networks

controller would then use the information attached to the packet to create a new flow
entry for similar packets according to the controller’s configuration. The controller can
then edit the flow tables of the affected routers and e.g. add the newly created flow
entry.
Alongside these controllers multiple vendors supplied SDN controller platforms that
allow for an enhanced overview over the network, add the ability to use modular plu-
gins for additional functionality and overall simplify the interaction with the network.
Lastly, controllers serve as an interface for other applications that can communicate
with the controller over its so called north-bound api. This includes applications like
firewalls, load balancers and even business systems, allowing for a lot of flexibility
when designing an automated network.
This causes networks to be logically split by their available information and level of
operation. On the one hand there are operations directly on routers and switches, only
using available information to the device itself and maybe its neighbours. Mechanisms
working under these conditions are part of the so called data plane. On the other hand
there are operations on the controllers, managing devices and maintaining an overview
over the network, or routing protocols using link-state algorithms to collect data about
the network. These functions and mechanisms are part of the control plane.

2.2 Failure scenarios in modern networks

Computer networks are a complex structure of many different interconnected devices,
with each device powered on and working for long times without break. As such, net-
work components will and do fail. In big networks, daily failures of multiple devices
are a common occurrence (Gill, Jain, and Nagappan 2011) even though most devices
will be optimally stored, cooled and secured against outer influences or human inter-
ference. We show the scale of failures occurring in networks in section 2.2.1 using a
study by Gill, Jain, and Nagappan (2011), which analyzed failures in a network of data
centers over a year and evaluated their causes and possible consequences.

2.2.1 Failures in data centers

The reasons for failures are multifaceted and largely depend on the used network
components, network structure and security measures. In 2011 a study by Gill, Jain,
and Nagappan (2011) analysed failures that occurred in a network of large professional
data centers over a year. They found that over their measurement period a mean of 5.2
devices experienced a failure per day, while a mean of 40.8 links experienced a failure
per day. Most of these failures had a small, if any, impact on the network, as many
security measures like redundancy or dynamic re-routing were already implemented.
Still, many devices and links experienced downtimes and a huge amount of packets
and data were lost. The downtimes and lost data could cause costs for the provider as
it is common to define a service-level agreement (SLA), an agreement between service-
provider and consumer which defines levels of availability and reliability (besides
other factors) the provider has to fulfil (Wustenhoff and BluePrints 2002). If the agreed

7

Chapter 2 Basics

levels of availability and reliability are not met, the provider will pay a penalty. A
lower downtime or faster convergence can therefore avoid additional costs.

Failure causes

When analysing the causes of the failures, most device failures were caused by mainte-
nance operations on the network, for example if an aggregation switch was shut down
temporarily and each connected switch and router was temporarily unreachable. Link
failures on the other hand were caused by many different issues, including software
errors in load balancers also causing the link from and to the load balancer to be as-
sumed as faulty, as well as hardware issues requiring the replacement or power cycling
of components. Some were discovered to be caused by protocol issues. The miscon-
figuration of components was only discovered sporadically, but was also a cause for
network failures.
Aside from the observed failure causes in this example, there are still factors like envi-
ronmental interferences, e.g. environmental catastrophes or cosmic radiation, external
influences, e.g. cut cables by a building company, or malicious attacks, e.g. denial-of-
service attacks against parts of the network, that are able to cause failures in computer
networks.
Failures caused by e.g. maintenance work are unavoidable. Most network administra-
tors will therefore introduce a level of redundancy in their network, feathering the
impact of e.g. the replacement of a faulty component. In the practical reality many
systems work with an active-active architecture. In this case all involved components
for redundancy are used in the network for normal operation. Each maintenance op-
eration will cause the backup line to temporarily be under an increased level of load,
possibly causing an overload, additional delays or the loss of data. But while active-
active architectures are also more expensive to run because of additional running costs
for power and maintenance, they increase efficiency of bought devices and provide
redundancy.

2.3 Resilient routing in modern networks

The main resiliency goals of a network provider are (1) producing as little failures
as possible and (2) reducing the impact of each remaining failure, given that some
failures are unavoidable.
Securing a SDN imposes additional challenges but also additional flexibility over a
traditional network. In a network without controller most routings will be either en-
tered manually or a routing protocol like OSPF (Moy et al. 0004–1998) or Intermediate
System to Intermediate System (IS-IS) (Callon 0012–1990) would be used. In case a
routing protocol is used, the routers themselves handle the routing in accordance to
the definition of specified routing protocol. In the subsection 2.3.1 we explain one
of the traditional routing protocols OSPF and its implications. We put this into con-
trast in subsection 2.3.2 where we discuss benefits and drawbacks of a SDN. After we
established a basic overview over the differences of architectures, we shift our focus

8

2.3 Resilient routing in modern networks

on resilience on the control plane and data plane specifically in subsection 2.3.3 and
subsection 2.3.4. While fast recovery methods (FRMs) mostly work on the data plane
they take a role somewhere in between the data and control plane and are often used
in addition to methods on the data and control plane. This is why we devote the
subsection 2.3.5 to the explanation of multiple FRMs and their applications.

2.3.1 Traditional routing protocols by taking the example of OSPF

OSPF is a link-state protocol and therefore shares information contained on a router
with its direct neighbours. Routers will be split into different pre-assigned areas, with
a cluster of routers designated as backbone area. The rest is split up into a multitude
of areas and area types, summarized as nonbackbone areas. The backbone area is used
as a central network point and all traffic from the network that moves between other
areas must flow through the backbone area. Because of its design, the backbone area
would be a single point of failure if only a single router was used, blocking all traffic
between areas in case of a failure. The usage of multiple routers as backbone area
serves as additional safety through redundancy, combating this issue.

Each router shares all his information with its directly adjacent neighbours on the
condition that the adjacent router belongs to the same pre-defined area. After an in-
troductory period of sharing routing information using the hello protocol, each router
in an area would hold a database about the network. OSPF uses the hello protocol and
each router sends regular "Hello" messages to its neighbours according to a predefined
HelloInterval which defaults to a value of 10 s. In addition to this, there is a RouterDead-
Interval which should be a multiple of the HelloInterval and is set to 40 s by default. If
a router did not receive a "Hello" message for as long as the dead interval is config-
ured, the router will assume the neighbouring router to be down and will share this
information. In case a network component, e.g. a link, would be detected as faulty, the
router would share this information with its adjacent neighbours which will in turn
repeat the change to all routers connected to them. This would cause a propagation of
a refreshed version of the routing and allows for a relatively fast convergence time.

But communication between routers is still time-consuming and a convergence of a
link state protocol like OSPF will also suffer from its fault detection mechanisms. A
failing link might be easily and quickly recognized, but a failing router would require
the network to first wait for the RouterDeadInterval. This would mean a down time of
30 s to 40 s depending on the configuration.

Because routers perform these tasks themselves this also implicates that the internal
resources, e.g. processing power and internal storage of each router, need to be used
in part for OSPF. The network itself also receives additional traffic because the need of
the routers to share information. This would cause the network to break if components
were overloaded without any protective measures, as the processing power would not
suffice to still maintain OSPF.

9

Chapter 2 Basics

2.3.2 Security benefits and drawbacks of software-defined networks

In contrast to this, a software-defined network uses one or more controllers as central
management components. They are made up of specialized hardware and software,
and use their own fault detection and failure recovery. Routers in such a network have
no need to perform complex routing protocol algorithms. Said operations are taken
over by the controller.
The main purpose of a controller is the creation of an abstraction layer of the network.
Network administrators have an easier time collecting information about the network,
as well as deploying new router configurations, granting them a lot of flexibility when
deploying safety measures.
SDN is, as any network, susceptible to denial-of-service (DOS) attacks. An e.g. Open-
Flow controller adds new variants of DOS attacks. One of such would be sending
packets which will by design cause a "table-miss" hit, only to cause each of these
packets to be sent to the controller. In an experiment Alharbi, Layeghy, and Portmann
(2017) found that the controller ONOS started to drop its performance after only 2000
packets per seconds were used in an orchestrated attack. A SDN without working
controller will start dropping packets that cause a "table-miss", preventing new flows
to be created and therefore limits the networks functionality.
As such SDNs introduce an additional single-point-of-failure to the network. Con-
trollers should be used redundantly and, if possible, should only control parts of a
network, with each their own controller cluster. This prevents failures in controllers to
impact the whole network.
To their advantage controllers allow for the easy implementation of more advanced
safety measures. A lot of work has been done toward DOS security in SDNs (Dridi
and Zhani 2016, Kuerban et al. 2016).

2.3.3 Resilience on the data plane

Per definition most methods providing additional network resilience on the data plane
are network agnostic and operations executed on the data plane can be assumed to
be very fast as overhead produced by e.g. communication protocols is avoided. One
widely used method to add resilience are static routes that are installed directly on the
components, re-routing traffic in case of failures. These are called local FRR (Nelakuditi
et al. (2003)). FRR routes make use of already existing link redundancy in the network.
They mostly use interface dependent routing, identifying returning packets and rout-
ing them over an alternative path. Because FRR acts on the data-plane it reacts very
fast and will re-route packets in a matter of milliseconds, but by its agnostic nature
will often create loops and therefore delays and additional traffic in a network.
The process is visualized in section 2.3.3. In the shown example, a packet is sent from
subnet 1 to subnet 4. The process on each router is exemplary shown for router R1.
The routing table shows only relevant entries for this example, additional entries are
omitted. It contains the destination subnet 4 multiple times, depending on the interface
that a packet was received on. In this example, if a packet to subnet 4 was received on

10

2.3 Resilient routing in modern networks

regular path

R2

R4

R3

r1-eth0 r1-eth2

r1-eth1

R1

Subnet Inport Outport

 2 r1-eth0 r1-eth1

 3 r1-eth0 r1-eth2

 4 r1-eth0 r1-eth1

 4 r1-eth1 r1-eth2

Routing Table for Router R1

subnet 3

subnet 4

subnet 2

subnet 1

Interface

Packet to subnet 4

(a) Network with FRR before a failure

Fast Re-Routing

R2

R4

R3

r1-eth0 r1-eth2

r1-eth1

R1

Subnet Inport Outport

 2 r1-eth0 r1-eth1

 3 r1-eth0 r1-eth2

 4 r1-eth0 r1-eth1

 4 r1-eth1 r1-eth2

Routing Table for Router R1

subnet 3

subnet 4

subnet 2

subnet 1

Interface

Packet to subnet 4

(b) Network with FRR after a failure

the interface r1-eth0, which is from subnet 1, the packet is sent over r1-eth1 to router
R2.
In case the connection between router R2 and R4 would be disrupted, router R2 would
redirect the packet back to router R1. Because router R1 has a separate routing table
entry for incoming packets on r1-eth1 going to subnet 4, it will now send the packet
on interface r1-eth2. The new non-optimal route now contains a loop as can be seen
in section 2.3.3. While the new route might not be an optimal route, it is taking effect
as soon as a router has recognized a failure and redirected a packet back to its entry
interface. In this example this would also only add the small delay of 2 transmission
times. The additional delay is dependent on the network and the level of redundancy
used. Loops have additional implications for the network and are part of the possible
optimizations for failures in a network, which is discussed in section 2.3.5.
The conditions for using FRR are easy to fulfil and most networks will already be
compatible with it. A certain level of redundancy is required, as components using
FRR need alternative routes to take.

2.3.4 Resilience on the control plane

In contrast, a SDN controller will react on failures by collecting information about the
network and calculating near-optimal alternative routes. It would then re-write the
routing tables on each affected component with protocols like OpenFlow. OSPF also
works on the control plane, as the routers collect information about the network.
Operations on the control plane are very thorough as decisions are made based on
an overview of the network. The collection of information and the deployment of
solutions, however, is very time consuming. A failure in a network that only uses
control plane mechanisms for failure handling will be unattended to during the whole
process, potentially creating backlog or reducing availability for a longer period of
time. Operations on the control plane mostly have convergence times in the dimension
of seconds (Liu et al. 2013).
This is the reason why most modern networks will use a combination of mechanisms
on the data and control plane, e.g. FRR and a global convergence protocol, allowing sub-
optimal paths to restore availability while the global convergence protocol provides
an optimised routing after some time.

11

Chapter 2 Basics

routing layer 0
routing layer 1

physical link R2

R1

R3

R4

R5

Figure 2.3: Resilient Routing Layers - visualization

2.3.5 Fast Recovery Methods

FRMs are operations that take place on the data plane. A combination of operations
on the data and control plane inevitably create a delay; while the alternative route was
already established in a matter of milliseconds through e.g. FRR, the operation on the
control plane, e.g. a controller calculating optimal routings, will take any time in the
order of seconds. In this time gap the network uses a sub optimal route for its traffic.
Loops created by e.g. FRR will affect the network in this time frame and will not only
potentially delay traffic but also reserve scarce link capacity on looped routes.
As such FRMs can be perceived as optimizations of data plane mechanisms like FRR.
Because FRR is very prominent in networks, we use FRR and FRMs optimizing FRR
as main examples. We chose a few of the existing FRMs and explain them. In Chiesa
et al. 2021 you can find a more thorough survey of some of the existing FRMs.

Resilient Routing Layers

One core issue of FRR is that routes created by FRR are inherently agnostic. Routers
depend their routing decision on no information other than the incoming interface and
the destination. This limits routing options; each combination of incoming interface
and destination network can have only one outgoing interface mapped. This can cause
loops as seen in section 2.3.3, because each route has to be "checked" and return a
packet for the next route to become active.
When solving the issue of sub-optimal paths on the controller however, the calculation
and roll-out of a solution can take several seconds. Kvalbein et al. (2005) proposed an
alternative solution.
Instead of using one routing for the network, each router would instead persist multi-
ple routing tables, with each routing table belonging to a so called routing layer. All
routing layers must be able to reach all entry and exit points of the network.
E.g. a link would be seen as "safe" if there is at least one layer in which the link is not
included. This can be extended for devices such as routers. Routing layers protecting
links can be seen in the example in fig. 2.3. While e.g. the link from R1 to R2 is
included in routing layer 0, it is not included in routing layer 1. If a failure in this link
would occur, the network could switch all routers to routing layer 1, circumventing

12

2.3 Resilient routing in modern networks

Loop

Dest. Inport Outport

H2 H1 R2

H4 H1 R2

H4 H1 R3

H4 H2 R3

R1

R2

R4

R3

H2

H4H1

H1 H4R1 R2 R1 R3 R4

data flow f Routing Table for Router R1

(Only FRR)

(a) Network with FRR and a failure

R1

R2

R4

R3

H2

H4H1

H1 H4R3 R4

Dest. Inport Outport

H2 H1 R2

H4 H1 R2

H4 H1 R3

H4 H2 R3

Routing Table for Router R1data flow f

(ShortCut in effect)

R1

(b) Network with FRR and a failure, optimized by
ShortCut

Figure 2.4: Concept of ShortCut

the failure. This requires routers to manipulate packets and add an identifier to the
packet, determining the routing layer that should be used.
Layers can be defined either manually or by algorithms taking configurable parameters.
A more robust, low relevance networking section could receive a lower number of
layers, while a high availability, high relevance networking section would receive more
layers and therefore higher robustness against failures.
Because each router needs a routing table for each layer, the number of routing tables
and therefore the allocated memory on the routers grows with the number of layers.
If e.g. each router had a safe layer, the amount of routing tables on each router would
be equal to the total amount of routers in the network.
The manipulation of packets limits the applicability of this method, as existing parts
of the network might not be compatible.

ShortCut

The authors of ShortCut (Shukla and Foerster 2021) propose to remove loops created
by FRR and therefore optimize the routes by self-editing existing flows on a router. In
addition to the interface specific routing performed by FRR, ShortCut also uses this
data to identify packets which were returned to the router. By maintaining a priority
list of flows for each port they would then be able to remove invalid entries, e.g. links
that failed or routes that returned a packet.
In fig. 2.4a you can see a network with pre-installed FRR routes on router R1, in this
example an additional route for packets heading to H4 coming from router R2, and
a failure in the link between routers R2 and R4. The returning packet from R2 will
be routed, according to the routing table, to router R3. This results in an off-path or
loop from R1 to R2, passing R1 twice. In fig. 2.4b the routes on router R1 for packets
from H1 are edited. Because ShortCut recognized that packets to H4 return from R2,
the route forwarding to router R2 is omitted from the routing table. As entries in a
routing table are evaluated from top to bottom, the alternative route on router R1 will
now always be used for packets to H4, effectively removing the loop.

13

Chapter 2 Basics

This saves (1) the additional transmission times to router R2 and back, as well as (2)
link capacity on the link between routers R1 and R2. ShortCut is applicable to most
network topologies as well as pre-existing FRR and global convergence stacks.

Blink

Blink (Thomas Holterbach et al. 2019) interprets TCP flows and uses them as an
indicator for failures occurring in the network. For this it uses TCP packets arriving
at routers implementing blink, analysing a sample of these flows. If it recognizes that
e.g. a packet was not acknowledged and this occurs multiple times, it signals a failure
and re-routes traffic accordingly. This, however, requires the network to fail first, only
restoring connectivity after packets were already lost.

Revive

Revive (Haque and Moyeen 2018) combines the usage of local backup routes with a
memory management module, distributing traffic according to pre-defined memory
thresholds on switches. All backup routes are implemented by installing flows on the
routers/switches with an OpenFlow controller. It also uses OpenFlow’s Fast Failover
Groups (FFG) for detecting failures. The backup routes, however, are prone to create
loops and the addition of re-routing using controller mechanisms is relatively slow,
although much faster than a global convergence protocol.

2.4 Creating a test environment

Modern networks achieve high levels of complexity and flexibility to satisfy many
different configurations and use cases. To evaluate a network and test new mechanisms
and functions, the simulation of network technologies becomes necessary to confirm
theoretical concepts.
While using real life components for such a simulation might be the most realistic
approach, it quickly becomes infeasible especially in a scientific context, as it not only
adds dependencies on different hardware vendors possibly distorting results, but also
reduces replicability of said results. Furthermore it also complicates automation of
measurements, increasing the overhead in testing.
Most networks already use some sort of virtualization, be it in form of Virtual Local
Area Networks (VLAN), partitioning already existing physical networks into "virtual"
networks, or the usage of virtual routers running on so called white boxes, eliminating
the need for specialized hardware.
This eliminates some of the bridges between a virtual simulation and a real life network.
While the network itself might not exist in the physical world, the software running
on these virtual devices is already similar or even the same as in real life networks. In
some cases configurations can even be shared between physical and virtual devices,
allowing for fast real life confirmation of results.
As such most scientific work in regards to networks is in some way done on virtualized
networks. It becomes possible to implement huge network structures and testing

14

2.4 Creating a test environment

setups on a single computer and allow each reader with a sufficiently powerful home
computer to replicate the results.
In the following sections we will first take a look at Mininet (Lantz, Bob and the
Mininet Contributors 2021), a network virtualization toolkit in section 2.4.1. We then
go on to discuss measurement criteria for a computer network in section 2.4.2. Lastly
we discuss methods of introducing failures in Mininet in section 2.4.3.

2.4.1 Mininet

Mininet (Lantz, Bob and the Mininet Contributors 2021) is a tool to create virtual
networks running in linux based operating systems, with each component running its
own linux kernel on a single system. This is done using network namespaces, which
is a feature of the linux kernel allowing for independent network stacks with separate
network devices, routes and firewall rules.
Mininet supplies a verbose management console which allows for the creation of vir-
tual networks by using simple commands. These networks can then be evaluated, hosts
can be accessed via a terminal and influenced in their behaviour, e.g. by editing their
routing tables or implementing packet filtering on them, and pre-defined functions
can be used to evaluate the performance of the network or monitor traffic.
Mininet also comes with a python API which can be used to create automatic scripts
that will create host, routers, switches and controllers, connect them via links, set their
routing configuration and execute functions on the network.
These scripts can be shared and used in Mininets provided virtual machine based on
the Ubuntu distribution in several versions of Ubuntu.
Additionally it supports the OpenFlow protocol and the usage of controllers like POX,
as well as the P4 language (Bosshart et al. 2014), which can be used to customize packet
handling even more. Written controllers can then even be used in real life setups that
replicate the created network in Mininet and retain their programmed functionality.
This allows the quick creation and configuration of test environments, as well as
replicability of test scenarios, the creation of failure scenarios and the application in
real life.
Mininet also provides support for limitations on created networks, which allows users
to define throughput limits for links or added delays for packets passing certain links.
Its throughput is dependent on CPU capabilities, but because of its relatively small
overhead, it was confirmed to be a realistic approximation for experiments for up to
1500 hosts in Muelas, Ramos, and Vergara (2018).
The virtual machine has most necessary tools pre-installed by default, making Mininet
a good option for non-hardware performance testing and experimentation.
One important note about the usage of the Mininet VM is the configuration in Virtual-
Box (Oracle 2022), a virtualization software allowing the operation of virtual machines.
The Mininet VM is provided as an image for this software. As such the developers
behind Mininet already preconfigured the virtual machine for usage in VirtualBox.
While implementing and evaluating our network we decided to allocate more host
system resources to our VM, increasing the amount of cpu cores from initially one core
to four cores. This however caused huge fluctuations in our test results, sometimes

15

Chapter 2 Basics

limiting the bandwidth between hosts in a network to around 10% of their expected
bandwidth. Only after using one cpu core again would the VM and Mininet function
properly.

2.4.2 Measuring performance

When evaluating the performance of a network there are several quantitative and
qualitative criteria to be considered, depending on the use case and the type of network.
We explain the evaluation criteria in section 2.4.2. In the following sections we then
explain possible ways to measure specific criteria. In section 2.4.3 we lastly explain
how failures can be introduced and used in a test environment.

Evaluation criteria

The most basic usage of a network is the pure transfer of data without timing or flow
constraints. Here, a faster transmission and therefore a higher bandwidth is the main
criteria of evaluation. Protocols like TCP also resend dropped packages, so in these
cases the bandwidth can also be used to make assumptions about the transfer error
rate.
For traffic with timing constraints e.g. Voice-over-IP (VOIP) the bandwidth is bound by
the number of concurrent transmissions and the quality of sound. In modern networks
these transfers should only use a fraction of the available bandwidth. Additionally, in
contrast to a TCP data transfer, dropping a few packages is only a minor inconvenience
and would most likely not be noticed by the user.
Therefore the most recognizable criteria in VOIP is certainly the delay and the flow
of packages. While a delay of a few milliseconds will not be instantly recognizable to
the user, it can quickly result in a poor experience, especially if other factors like the
usage of a wireless connection to a phone etc. are considered and delays accumulate.
VOIP protocols mostly use a jitter buffer to collect packets in a certain time frame and
reorder them according to their sequence numbers. This works very well if all packets
were received in the correct order and without much delay. However, if a disruptive
failure would occur chances are that additional delays and changed routings could
cause the jitter buffer to be insufficient and the quality to suffer. As such, the evaluation
of the packet flow and the order of transmission should be evaluated as well.
On-demand video streaming mostly uses the UDP and is not timing bound. High
bandwidths are certainly required, but the lack of such will only be perceived when
the bandwidth becomes unable to sustain a fluid playback of the video content. UDP
does not resend dropped packages and a small count of missing packets is not a huge
problem. A higher count of lost packets will however reduce quality and in some cases
even cause a disruption of the service.
Up until now we only considered the bandwidth as the speed of data transfer from
one device to another. In reality networks will forward thousands of data streams and
existing links are rarely unused. If a data transfer would e.g. use a larger route through
the network caused by a failure and that route contains a loop, the links inside this
loop are unnecessarily strained and might influence other traffic in the network.

16

2.4 Creating a test environment

In summary, a non-specialized network is evaluated by it’s bandwidth, link usage,
latency, packet loss and packet flow.

Measuring bandwidth

Measuring bandwidth requires sending arbitrary data over the network. Tools like
iperf allow for easy testing of bandwidth. The process of testing includes starting a
server on a receiving device and starting a client on the sending device. Over a certain
period data is then sent over the network and the client as well as the server will log
the transfer rate by second.
After the pre defined time the transfers will stop and the client instance of iperf will
shut down, after printing out the average transfer rate. The server instance will have
to be shut down manually.
By default iperf will use TCP to send data, but when using the "-u" flag it will instead
transfer data using UDP. When using UDP iperf requires an additional bandwidth
parameter, which will specify how much data will be sent over the network. This is
done because protocols like TCP use flow control to limit the amount of data sent on
the capabilities of the receiving device. A slower device like a mobile phone will e.g.
limit the data transfer to not get overwhelmed. Protocols like UDP do not provide any
flow control and therefore iperf has to limit the used bandwidth itself. Using "-u 0"
will cause iperf to send as many UDP packets as possible.

Measuring latency

Measuring latency can be done most easily by using the ping application included
in most operating systems and sending multiple "pings" in a certain interval from a
sending device to a receiving device. The sending device will send an Internet Control
Message Protocol (ICMP) echo request packet to the receiving device over the network
and if the packet was received, the receiving device will answer with an ICMP echo
reply packet. After each sent packet, the sender will wait for the reply and log the time
difference between sending and receiving.
A ping test can be run for a given time during which a failure can be introduced.

Measuring influence of link usage

One approach to measure the influence of two data flows on each other is to start two
iperf measurements simultaneously, with one using host H1 as client and host H4 as
server, and the other using host H2 as client and host H1 as server. When a failure is
introduced, both data flows will pass the link between routers R1 and R2 in the same
direction as can be seen in fig. 2.5. Traffic that is sent in opposing directions does not
influence each other as ethernet uses a duplex connection.
This would cause the connection between router 1 and router 2 to be strained by
both data transfers. They would most likely try to use the maximum amount of band-
width they can acquire as they are unable to exactly specify which transfer should be
prioritized or if they should split the available bandwidth equally.

17

Chapter 2 Basics

R1

R2

R4

R3

H2

H4H1

data flow 1

data flow 2

Figure 2.5: Link usage

Measuring packet loss

In a virtual network packet loss will not be caused by faulty devices on an otherwise
unknown route as each component is assumed to work correctly. The main causes of
packet loss in such a network would be either an overflow of packet queues on the
routers, where full queues would cause additional packets to be dropped, or the intro-
duction of failures and resulting waiting times from these configuration changes. In
most networks packet queues should be configured according to the network require-
ments and will most likely be large enough to hold enough packets for the throughput
that has to be achieved. This is why we focus on packet loss caused by failures.
We have to keep in mind that some of this packet loss might be caused by the config-
uration changes which are used to simulate a link failure in the virtual network. As
such packet loss will most likely only occur shortly after a failure is introduced, or,
in case UDP is used in a bandwidth measurement, if the bandwidth that has to be
achieved overloads the packet queues of the routers.

Monitoring packet flow

Network mechanisms like ShortCut influence the routing and therefore the flow of
packets in the network. To gain an overview over the routes packets take, we can
analyse this packet flow by measuring the amount of packets belonging to a specific
protocol, e.g.. This can be done with tools like nftables, which besides its functionality
to create rules for packets acting as a firewall is also able to use these rules to deploy
counters. These counters can be accessed in regular intervals to confirm if e.g. a FRM
was successfully triggered and traffic is re-routed, skipping a router.

2.4.3 Introducing failures

In related studies failures are often split into definitions of device failures and link
failures. Depending on the network structure link and device failures have different

18

2.4 Creating a test environment

impacts on the network. If e.g. a top of the rack switch fails, the whole rack loses
connection to the network. A single link failure might only affect a single component.
Nonetheless, a link failure and a device failure are not so different. While a link failure
requires the network and its administrators to take different measures than if it was a
device failure, the data plane of the network will react quite similarly.
Failures and measures taken by the network can be split into two phases. In the first
phase a network component, be it a link or device, breaks. This can be either a failure
in parts (e.g. specific packets dropped, protocols not working etc.) or a complete failure
which constitutes a complete breakdown of functionality. The network uses timeouts
and fault detection protocols on layer 1 (physical) and 2 (ethernet) to detect faulty
interfaces and links. Most complete failures will be recognized near instantly, while
partial failures might take longer to detect because they require e.g. timeouts to run
out. These partial failures will most likely be caused by device failures, as link failures
are less complex. Even a partially working link will most likely produce faulty packets
which will be recognized quickly. The first phase contains all operations done until a
failure was recognized.
When the failure was detected, the second phase starts. This is when the network
becomes active and reacts to the failure, e.g. by using FRR to quickly reroute affected
traffic flows and inquiring the controller to take further action. This is the phase of the
failure in which the type of failure becomes near irrelevant for the operations on the
data plane; the router recognizes a failing route, e.g. because the router behind a link
is broken, and reacts accordingly. This reaction is very deterministic as only data on
the router is used.
The FRMs in this work always presume clean failures that already have been detected.
Fault detection in phase 1 is therefore excluded from this work and we always assume
that a device or link has failed completely. Because we only focus on the fault mitiga-
tion on the data plane we can also assume that a faulty devices constitutes a device on
which all links are broken. A failure in the only link connecting a router for example
is the same as a completely broken router.
This is why we opt to simulate failures by deactivating interfaces on routers. The router
will instantly recognize the error and routing table entries referring to the affected
interface will be ignored. Every occurring fault and measurements will be limited to
the fault mitigation phase.

19

3
Implementation

In the following chapter we implement an examplary network in Mininet, including
routing between hosts and routers. We also implement fast re-routing as well as
ShortCut. In section 3.1 we explain the test framework that we built for performing
tests. In section 3.2 we then explain how we implemented FRR in the test framework.
Lastly we talk about our implementation of ShortCut in section 3.3.
All implementations, this thesis and the test result can be accessed on our Git repository
(Maaßen 05/2022).

3.1 Implementation of a testing framework

We describe the setup of a custom test framework which we will continue to use
for the tests on Mininet networks. The framework is a collection of pre-configured
networks, tests, routings and scripts, which can be used as a base for automatic tests.
The framework is implemented in python 3.8.
To perform tests for multiple topologies and failure scenarios a structurized framework
should be implemented. The core component is a main script called mininet_controller,
responsible to perform all operations on the Mininet network using the Mininet python
API.
Topologies can be created and added to the framework by creating a python module
in the package "topologies", inheriting from the "CustomTopo" class described in
CustomTopo in section 3.1.1. They then have to be referenced in the "topos" dictionary
in the mininet_controller with the name of the topology as key. The corresponding value
is a dictionary which in turn contains the class, the module name, i.e. the file name
without extension containing the class, and a description of the topology as items.
Each topology implements a build function which is a predefined function for Mininet
topologies and contains the setup of links, hosts and switches. When creating a Mininet
network an object of the topology can be passed to Mininet, which will call the build
function to create network components.
If routers should be used in a topology they can be added as nodes. This is done by
calling the addNode function and passing it the "cls" parameter with our custom router
class as value. The router class is described in LinuxRouter in section 3.1.1.

21

Chapter 3 Implementation

Each topology also provides its own routing, IP policies for FRR and tests, as each of
these have to be manually adjusted for each topology. We use python dictionaries to
store these configurations. The configuration of routings is described in section 3.1.2,
the configuration for IP policies is described in section 3.1.3 and the configuration of
tests is described in section 3.1.4.
The test framework already provides measurement commands which can be used
in test configurations. These are described in section 3.1.5. Results from these mea-
surements can be used to plot graphs using our plotting commands described in
section 3.1.6.
Lastly we also provide users with a parameter based CLI, which we describe in sec-
tion 3.1.7.

3.1.1 Base components

In the following sections we describe the two added base classes which extend the
behaviour of existing Mininet classes for our needs.

LinuxRouter

Mininet does not provide a router class by default. This is easily circumvented as linux
already provides tools to configure routing logic on a linux host or, in case of Mininet,
on a Mininet Node. To make use of this functionality the IPv4 forwarding has to be
activated using the sysctl utility.
Because this process would have to be repeated with every router that is created, the
Mininet creators already provided an example for a LinuxRouter class, which will on
instantiation execute the necessary command to enable the IP forwarding.
We use this example as our router class used for all routers implemented in the frame-
work.

CustomTopo

Because each topology should provide some additional functionality we added a
CustomTopo class. Every topology that should be used in our test framework needs to
inherit from this class.
When instantiating an object from our class the user has the option to pass additional
custom limit and delay parameters. These are set as attributes on the topology and
will be used in the extended addLink function to set limits and delays on each link
created in the topology. The user can, however, overwrite global limits and delays on
links by providing his own configurations in his function calls of the addLink function
in his topology.
In it we add some abstract functions for policy, test and routing configurations which
should be extended by topology classes. In addition to this we added utility functions
which will create dictionaries with e.g. routing tables mapped to interfaces which are
used in the deployment and testing of Mininet networks.

22

3.1 Implementation of a testing framework

3.1.2 Routing configuration

The configuration for routings is saved in a python dictionary. Each key specifies a
router which has to match the names specified for the routers in the build method.
This splits the configuration into dictionaries by router.
Each router can contain multiple routing tables specified in the key by name. This table
name will be used to create additional routing tables automatically. Lastly, there exists
a list of routings for each routing table. A routing is a 4-tuple/quadruple consisting of
the route with subnet mask, a gateway address, an outgoing interface and the metric
priority, in that particular order.
Each of these routings will be added automatically to their respective routing tables
on the specified routers.

3.1.3 IP policy configuration

The configuration of IP policies for the implementation of FRR follows a similar ap-
proach to the routing configuration. It is a python dictionary split by routers as keys.
Each router has a key "rules" which contains a list of dictionaries, each containing a
specific rule.
A rule consists of a table it should be applied to, an incoming port and a list of
destination addresses. For each destination address an entry will be added to the IP
policies, redirecting traffic to the specified table.

3.1.4 Test configuration

The test configuration is a python dictionary with test names as keys. Each test is
defined by a python dictionary, containing information about the test.
A test has two phases, the pre-execution phase and the execution phase. In the pre-
execution phase a list of commands pre-defined by the Mininet controller can be
used to prepare the network for a test. These commands can be specified under the
key pre_execution. This was implemented because a network that was just created
might have additional delays on the first execution of functions caused by e.g. Address
Resolution Protocol (ARP) handling.
The execution phase contains the actual testing. A command can be executed and its
results will be written to the Mininet console.
Additionally failures can be introduced to the network. The key failures contains a
list of failures, defined by a type and a list of commands. The types of implemented
failures are "intermediate" and "timer". Intermediate failures will be executed after a
first run of the execute command, which will be repeated after the failure function
was called. A failure that is of the type "timer" will start a timer in the beginning of
the measurement, which will execute the defined command after a delay, which is
provided through an attribute named "timing".

23

Chapter 3 Implementation

3.1.5 Implemented commands for measurements

A command can either be a lambda which is only dependent on the net, which will
be passed into the lambda by default, or a function definition which is a tuple of the
name of the function and a second nested x-tuple, depending on the function to call,
containing all arguments that need to be passed to the function. The functions are
defined in the mininet_controller and can’t be called directly, because the topologies
are loaded dynamically and will not know existing function definitions until they are
loaded. Because of this the mininet_controller contains a dictionary called "functions"
which has the function name as key and an attribute called "callable" containing a
lambda with the function call using the provided arguments. In the following we list
the existing functions and explain their functionality, which files are created and which
output can be used for further testing and evaluation.

connection_shutdown

The function connection_shutdown deactivates one interface each on two specified
Mininet hosts, effectively removing a connection between those two hosts. It can,
however, be used to deactivate any interface on any device in Mininet and is oblivious
to the network context and existing connections. This function will use a connection
which is by definition a list with 2 elements, containing the names of the hosts/n-
odes which are linked together, a list with 2 elements containing the names of both
components for printing and a list with 2 elements containing the interfaces which
should be shut down. It will then access the components in the network and use the
cmd function provided by Mininet to execute an "ifconfig down *interface*" on the
component, which will cause the interface to be deactivated. This is done on both sides
of the connection to make sure that each router will be able to recognize the missing
connection instantly.

measure_bandwidth

The function measure_bandwidth is used to measure the bandwidth between two Mininet
hosts in a Mininet network using iperf, logging and parsing results after the measure-
ment. Results are then sent to one of the plotting functions described in section 3.1.6.
This function will use a 2-element list of hosts, a 2-element list of IPs, a length param-
eter that defines how long the test will run in seconds, an interval parameter defining
the interval between each log entry of iperf, a unique test name for naming a created
graph or log entry, a graph title in case a graph should be created, a flag that defines
whether iperf should use TCP or UDP as transfer protocol and a bandwidth to limit
the transfer rate of iperf.
The command starts an iperf server. While experimenting we sometimes experienced
unexpected behaviour causing tests to fail. There seemed to be an issue with the timing
of the iperf server and client commands which were executed on the corresponding
devices. Because the iperf server and client were started detached and the python
script executed both commands directly one after another, the client seemed to try
to connect to the server while the server was still in its startup process, denying the

24

3.1 Implementation of a testing framework

connection. This is why we added an additional delay between server and client
command execution.

measure_link_usage_bandwidth

The function measure_link_usage_bandwidth is used to start two separate iperf measure-
ments between two host-pairs and will log and parse results of both measurements.
The results are then passed to the multi-plotting function described in section 3.1.6.
The second iperf measurement will use the port 5202 instead of the default port 5201
in case two servers are started on the same device. The function reuses the mea-
sure_bandwidth function described in section 3.1.5. We call the measurement done by
the measure_bandwidth function the "main" measurement, the additional measurement
used to evaluate the influence of another file transfer on the network the "additional"
measurement.
The measurements are configurable by providing an interval in which iperf will log
results, as well as a length parameter to specify how long an iperf measurement should
be run. While the main measurement is run for the exact specified time the additional
measurement is run for a slightly longer time due to timing issues.
Because we reuse the measure_bandwidth function, the additional measurement is
started with a delay. The measure_bandwidth functions introduces a sleep time of one
second between the execution of the iperf server command and the client command,
which would cause the additional measurement to be executed a second early to the
main measurement. This is why we considered this additional second in the execution
and the parsing process of the iperf output, executing the additional measurement for
a longer period of time, omitting the entry for the first second and shifting all time
values one second ahead. Doing this we create a log output that is nearly synced only
adding the delay created by the Mininet and python overhead.
Both results are then passed to the multi-plotting function referenced in section 3.1.6,
to create a plot containing both bandwidth measurements. The original graph created
by the measure_bandwidth function is also saved. The combined graph receives the
subtitle "_combined".

measure_latency

The function measure_latency is used to start a ping latency test between two hosts
in a Mininet network. It will log the results, parse them and then pass them to the
plotting function described in section 3.1.6. This function will use a sender element in
the network, a destination IP, a length parameter that defines how many ping packets
should be sent, an interval parameter defining the delay between each ping, a unique
test name, a list containing the range for the y-axis of a created graph and a graph title
which will be used in naming the files of tests.
After creating a test name out of the components of the measurement, including sender
and destination, which latency measurement function was used (currently only ping is
used), the defined unique test name, e.g. containing information whether the test was
started before or after introducing a failure, as well as whether or not ShortCut was

25

Chapter 3 Implementation

used. It will then start a ping from the defined sender to the destination IP and log
the results to a file in the "/tmp/" directory. The ping command is started in detached
mode using the bash target "&". Output is directly written to a file using the ">"
operator in the bash command. The python script will then wait for the corresponding
time, adding some seconds to make sure all executions were fully run. After that, the
produced ping output is parsed using bash tools, including more, head and awk, to
create a single line command which will create a file with time-value pairs, separated
by line.
The output file will then be extended by a zero value. All files created are saved in the
"/tmp/" and can be used to further inspect results. They are named according to the
test name. Files containing console output or parsed versions of said output use the
file extension ".out".
After successfully parsing the output files the information about the test, including
information about the test name is passed to the plotting function further explained
in section 3.1.6, which will create a plot in the "/tmp/" directory under the same
test name using the file type ".eps", which can be implemented directly in a LaTex
document for documentation.

measure_packet_flow

This function will use a client and server parameter to start an iperf transfer and
will implement packet counters using the filtering capabilities of nftables. All devices
referenced in the flow measurement targets provided in the parameters of this function
will receive a separate counter. Depending on the "flag" parameter they will count all
packets entering the device which belong to the specified protocol.
When the packet counters are created information about them will be stored in a global
packet counter memory. This memory is later used to access and read the values of the
counters. The script saves the current state of packet counters globally in case the script
is run again during the lifetime of the network to avoid the multiple implementation
of the same counter and thus errors that could occur. The test uses this state to act
depending whether or not the counters were already initialized. If no counters exist
yet it will create them, if they were already created during runtime they are reset to a
value of zero instead.
There are python libraries for reading nftables entries. Because an implementation of
these would take additional time and the usage of network namespaces of Mininet
adds some complexity to the configuration, we decided to instead manually check and
parse the output of the nftables counter using python.
After starting a bandwidth test using iperf on the client device, the packet counters
are started which will start a python thread for each of the measurement targets. In
each of these threads the bash command for displaying counters is used to access the
current count. The output is saved in python, parsed and then saved to a log file which
is named after the device that is being logged, including the current time of execution
in a fitting format for gnuplot.

26

3.1 Implementation of a testing framework

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

Latency from H1 to H3 with concurrent failure

Figure 3.1: Exemplary latency test run with automatic plotting

After stopping the iperf server the created log files are passed as a dictionary with
the corresponding label for the data to the multi-plotting function explained in sec-
tion 3.1.6.

3.1.6 Plotting functions

Plotting results helps with visualizing differences, but performing a high number of
tests and creating graphs manually quickly becomes tedious and will take a lot of
time. This is why we used gnuplot to automatically create graphs. Each function that
produces a log output containing results will parse its own results to only contain a
time-value and a value, separated by a space, with additional values listed line-by-line.
This data is then passed to gnuplot, which will produce an eps file containing a simple
plot of our data. A test run with iperf would look like seen in figure 3.1. We use the
"with linespoints" option, as well as the passed graph title for additional information
on the plot. A call of the plotting function also allows to specify the labels for the
x- and y-axis, as well as a range for the y values. If no range was provided the test
framework will use the minimum and maximum values of the results instead.
In addition to plotting a single line in a graph we also implemented a function to
plot multiple data files in gnuplot automatically. The function uses a greyscale as line
colors and different dash styles for differentiating plots. It adds a defined label to
each dataset. This can be used to e.g. plot the packet flow of multiple devices. A plot
created with this method will look something like can be seen in fig. 3.2.

3.1.7 Command line interface

To make use of our test framework we added a command line interface (CLI), allowing
the user to deploy existing topologies and run tests on them by providing arguments
to the call of the mininet_controller script.
By calling the script using the "-h" or "–help" argument a list of possible arguments is
displayed, including a description of the arguments. Using the argument "–topos" a
list of all configured topologies, including a description, is displayed. When the name
of a topology is provided to the "–topo [topology]" option, it will be used to create a

27

Chapter 3 Implementation

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

Figure 3.2: Exemplary packet flow test run with automatic plotting of multiple graphs in a
figure

Mininet and will boot into the Mininet CLI. Using the "–topo [topology]" argument
with a specific topology and adding the "–tests" argument will print all existing test
names. When providing a specific topology and the argument "–test [test]" with a
specific test name, the Mininet network is created according to the topology and the
specified test is run according to the tests configuration. After the execution of the test
finished, the network is shut down.
The argument "–limit_bw [bandwidth in Mbps]" can be used to limit the bandwidth
on all links in the network by default, only using different bandwidth limitations on
links for which another bandwidth limitation has been explicitly configured in the
topology. This is also true for the argument "–delay [delay in ms]", which will add the
specified delay per default to all created links.
When using the argument "–shortcut" the ShortCut mechanism is installed on the
network.
Lastly we added arguments for the easy execution of multiple tests. The argument "–
produce_set" will execute the with "–test [test]" specified test on the topology specified
with "–topo [topo]" with and without our implementation of ShortCut. The argument
"–full_suite" will execute a given test on all members of a pre-defined list of topologies
as long as the test uses the same name in all included topologies. Each test will be
repeated twice for each topology, once with and once without our implementation of
ShortCut.

3.2 Fast Re-Routing

To implement FRR it is required to identify returning packets.
Depending on the target address and the interface of entry we can determine whether
a packet is taking its regular route or if it is a returning packet. In case of a returning
packet it would need to take an alternative route if possible.
In our simple network this would be the case in a scenario where a packet is going from
H1 to H3, but the link between R2 and R4 would be unavailable. R2 then returns the
packet to R1. The information that a packet to H3 should not normally be received on

28

3.3 ShortCut Implementation

the ethernet device linked to R2 can be used to re-route this packet by using additional
routing tables, referenced by ip policy rules.
The function ip rule is part of iproute2 (Alexey Kuznetsov 2011) and allows for the
addition of policy rules that decide for each packet coming into the router which rout-
ing table to use, depending on the destination, source, incoming interface or outgoing
interface. It also provides additional options and configurations, but in this context
only using the destination and the incoming interface will suffice.
By specifying additional routing tables for each router and each input, and adding
alternative routes, we effectively implement FRR behaviour.

3.3 ShortCut Implementation

ShortCut uses knowledge about the device it is run on as well as sent and received
packets. It should then be able to manipulate routing table entries in case certain
conditions are met, e.g. if a specific ip table entry was hit, using the data accessible.
The routing table manipulation has to take effect as fast as possible. Furthermore the
performance impact of the ShortCut implementation has to be evaluated.
We begin by discussing possible options to detect failures, including the identification
of returning packets in section 3.3.1. After we select the identification method using
nftables we go on to explain the implementation in section 3.3.2.

3.3.1 Identifying failures

To determine which route should be deleted from the routing table, ShortCut has
to gather knowledge about the packets forwarded by the router. The already imple-
mented FRR explained in section 3.2 adds routing tables which will be used depending
on the interface the packet was received on. These alternative routes are also added to
the default routing table with a lower priority metric, in case the link directly connected
to the router would fail.
To identify a packet that is returning and therefore a failure we already use the in-
coming interface when implementing FRR. If we would however be able to execute
a function when such a packet is received, we would also be able to delete the old
invalid routing table entry. For this there are several approaches which could be used.
The programming language P4 (Bosshart et al. 2014) can be used to write router logic
and compile it so that a Mininet routers behaviour could be changed completely. This
would also allow us to execute additional functionality in certain cases, e.g. if a specific
ip route table entry is hit, but would require a manual implementation of core router
functionalities like ARP handling. In the context of this work this is not feasible.
Another possible solution is the usage of low-complexity controllers, but to be able to
accurately identify returning packets, the controller needs in depth knowledge about
the routings and policy rules of a router. The easiest way to achieve this would be the
implementation of subnets, routes and most of the logic inside the controller through
flow table entries, but this would require a re-implementation of most of the routing
logic as well.

29

Chapter 3 Implementation

A far more easily implemented solution is packet filtering, which allows us to use
most of the pre-existing functionality and logic while still being able to react to certain
packets. In most linux distributions this functionality is already supplied using the
nftables package, which is mostly used for firewalls and therefore has the ability to
specify rules for packets which will then be inserted to a multitude of targets, e.g. log
files or a so called "netfilter queue".

3.3.2 Implementation using nftables

Netfilter tables (nftables) is a packet filtering tool for implementing firewalls in linux
kernels and uses tables to store chains, which are a set of rules for incoming packets
hooked to different parts of the network stack. These hook points are provided by the
Netfilter kernel interface.
It is certainly possible to write software using these hooks directly, but in the scope of
this work we will use nftables to expose packets using nftables rule definitions and their
possible targets. The targets include log files in which information about a received
packet can be stored. An outside software could then monitor said log files and react
to entries fitting a certain rule. nftables even provides the option to write log prefixes
to identify entries.
When trying this method it was quickly discovered that even though this would
be achievable in a realistic environment with linux kernel based routers, using this
method in a namespaced networking environment like Mininet is not possible because
logging to the default log file, which is a system log file, is disabled in the kernel.
This measure was taken because logging to a system log, which is shared by each
networking component in a namespaced network, could cause the host system to
suffer from a self-inflicted denial of service attack.
A far more sophisticated and also achievable approach in a namespaced networking
environment is the usage of "netfilter queues". These were created for the purpose of
exposing packets to a userspace software, which is exactly what we are trying to do.
Netfilter queues can be numbered and are unique to their namespaced component,
so that the netfilter queue 1 on router 1 will be different from the netfilter queue 1
on router 2. This is important because it saves us the manual distinction of netfilter
queues. A packet hitting a netfilter table rule can then be added to a queue, which
can be monitored by e.g. a python script. The python script would then be able to
manipulate the ip route tables.

30

4
Testing

In this chapter we define and perform the tests for our evaluation. For this we first
explain created topologies and their routings in section 4.1, followed by an explanation
of our measurements which are taken of every topology in section 4.2. We then go on
to explain the addition of failures, FRRs and FRMs to the tests in section 4.3.

4.1 Topologies and Routing

We define a set of topologies, which we later use in our tests. This includes a minimal
network explained in section 4.1.1 and two failure path networks in section 4.1.2.

4.1.1 Minimum sized network

This network is used for tests in an environment that fulfils the minimum requirements
for the implementation and reliable testing of a FRM. For this we determine the
minimum requirements for a network when testing ShortCut. ShortCut removes loops
from alternative paths selected by FRR after a failure was detected. To create a test case

H1

H2

H4

R1

R2

R3

R4

planned failure point

switch

Figure 4.1: A minimal testing network using 4 routers, 3 switches and 3 hosts

31

Chapter 4 Testing

in which ShortCut is able to optimize a FRR we need at least 2 paths/routes which
are connected and functionally independent, going to the same destination.
Two routes are functionally independent if no link is shared between start and end
point. The routes can be used as alternatives for each other if they share a common
start and end point.
We also need 2 hosts which can be used for sending and receiving packets. In a virtual
network environment like Mininet routers could also be used as sending and receiving
devices. Because we want to stay comparable to real life examples, we decided to still
use extra hosts. This is also the reason why we use switches on each router. In our
example all hosts connected to a router share the same subnet.
These conditions can be satisfied by a topology containing three routers, two switches
and two hosts. All routers are connected to each other and each router is connected
to a switch connected to one host. The longest path is one hop, the shortest path is a
direct connection to the destination router. To create a scenario in which a FRR route
would reroute after a failure, one route between routers would have to be cut.
Suppose there are three routers A, B and C. They are connected to each other. If A
wanted to send a packet to C, it could either use the direct link to C or send the packet
to B, which would route them to C. A loop could only occur if A sent its packets to C
taking a detour over B by default. By cutting the connection between B and C, packets
leaving for C to B would return to A and then be sent over the direct link. The new
path now contains an additional hop when compared to the original route, one to B
and one back to A. Using ShortCut to remove the loop would now cause the network
to use the direct path. In theory, the network will now add less delay to the transfer of
packets than before the failure.
FRMs and other protocols that focus on reliability of networks were created to restore
the original functionality of the network. Most networks will already use an optimized
layout and configuration. As such a suboptimal route will not be chosen unless deemed
necessary. Hence it is unlikely that in a real life network the alternative router chosen
after a failure occurred is faster than the old route. Because of these concerns we
decided to add a fourth router to the topology.
In addition to this we added a third and fourth host. This is optional, but when testing
the added strain on the network caused by a second data flow passing a loop created
by FRR, we want to add the option to use a real data flow instead of a simulated data
flow as described in section 2.4.2.
The whole topology can be seen in fig. 4.1.

Routing

We combined this small network with a simple routing. All routers except for router R3
create three subnets: one host subnet and two subnets connected to the other routers.
In case of router R3 only two subnets are needed as no host is connected.
The address of a subnet was chosen according to the router number. The subnet for
hosts connected to e.g. router R1 is 10.1.0.0 with a subnet mask of 24 or 255.255.255.0,
the gateway address is 10.1.0.1.

32

4.1 Topologies and Routing

1st connected Host

10.1.0.101

Router R1

10.112.0.11

Subnet between R1 and R2

Interface r1-eth1

Host Interface in Router-to-Router Subnet

Figure 4.2: IP address selection of (a) a host address and (b) an interface address in a router to
router subnet

H1 H6

R1

R2

R4 R5

R6

H3

R3

planned failure point

switch

Figure 4.3: A network with a failure path length of 2 links and 2 routers

The subnets between routers were given IP addresses in a similar fashion as shown in
fig. 4.2. The IP address for the subnet between routers R1 and R2 therefore is 10.112.0.0.
When choosing addresses we wanted to be able to identify the router and the interface
connected to such a subnet only by its IP. As only routers are part of the subnets
between routers, and we have a very limited amount of routers, we added the router
number, as well as the interface number to the IP address. We always attached all hosts
to the first interface and counted fro

4.1.2 Failure path topologies

FRMs advantages include the removal of longer paths. In theory, these should reduce
delays and strain on the network. To evaluate which consequences and advantages
FRMs have, we use two topologies with a similar design to our minimal network, but
additional hops on both paths. Both paths contain the same amount of hops to create
comparable values.

H1 H8

R1

R2 R3

R5 R6 R7

R8

H4

R4

planned failure point

switch

Figure 4.4: A network with a failure path length of 3 links and 3 routers

33

Chapter 4 Testing

Routing

The routing is an extension of the routing in the minimal network. The naming con-
vention shown in fig. 4.2 was used in both longer failure paths networks as well.

4.2 Measurements

To evaluate the performance of a network we established a list of criteria in section 2.4.2.
Our measurements should reflect these criteria, which is why we implemented corre-
sponding measurement functions in our test framework as described in section 3.1.5.
In the following sections we describe the implemented performance tests in detail,
beginning with the bandwidth test in section 4.2.1. We go on to explain the process
of our latency measurements in section 4.2.2. A test evaluating the influence of two
concurrent data transfers on looped paths is explained in section 4.2.3. To evaluate the
distribution of packets on the network while running a data transfer either with TCP
or UDP we implement a test described in section 4.2.4.
An evaluation of the results of the tests described here will be given in chapter 5.

4.2.1 Bandwidth

The tests measuring bandwidth are one of the most basic tests in our testing frame-
work. It uses the "measure_bandwidth" function described in measure_bandwidth in
section 3.1.5.
As each virtual network that is created in Mininet starts with empty caches on all
devices, we start a short iperf test on the Mininet network prior to each bandwidth
measurement which will cause most network handling like packets sent by the ARP
to be finished before the actual test starts. This reduces the impact these protocols and
mechanisms would otherwise have on the first seconds of the bandwidth measure-
ment.
The bandwidth tests are run using iperf. Each test is performed for 30 s with a log
interval of 0.5 s.
For all of our bandwidth measurements, H1 is used as the iperf client. The server is
chosen depending on the topology at hand which is H4 for the minimal topology
described in section 4.1.1 and shown in fig. 4.1, H6 for the first network used to
evaluate longer failure paths described in section 4.1.2 and shown in fig. 4.3, and H8
for the second network used to evaluate longer failure paths described in section 4.1.2
and shown in fig. 4.4.

4.2.2 Latency

Latency tests are run using the "measure_latency" function described in measure_bandwidth
in section 3.1.5. Prior to every measurement a separate ping test is run between the
hosts used for measurement. This is done to fill the caches of the routers, e.g. the ARP
cache.
After this initialization the test is run for 30 s with a log interval of 0.5 s.

34

4.2 Measurements

All latency tests were run with H1 as the sender. For each topology the receiving device
changes, using H4 for the minimal topology described in section 4.1.1 and shown in
fig. 4.1, H6 for the first network used to evaluate longer failure paths described in
section 4.1.2 and shown in fig. 4.3, and H8 for the second network used to evaluate
longer failure paths described in section 4.1.2 and shown in fig. 4.4.

4.2.3 Bandwidth link usage

This test uses two concurrent iperf measurements to measure the influence on the
distribution of bandwidth between two data flows in the network while the actual
routing of the packets is changed due to the introduction of a failure. It uses the
function "measure_link_usage_bandwidth" described in measure_link_usage_bandwidth
in section 3.1.5.
Before each test run a separate iperf measurement is run to fill caches on the routers,
e.g. the ARP cache.
The test is run for 30 s with a log interval of 1 s.For the first running measurement host
H1 is used as iperf client in all topologies, while the server changes depending on the
topology, similar to the configuration in section 4.2.1
The second measurement however always uses host H1 as an iperf server, shifting
the client depending on the topology. The client is always the host attached to the
router on the top path nearest to the failure point, which is host H2 in the minimal
topology described in section 4.1.1, host H3 in the first failure path network described
in section 4.1.2 and host H4 in the second failure path network, which is also described
in section 4.1.2.

4.2.4 Packet flow

The test uses the "measure_packet_flow" function described in measure_packet_flow in
section 3.1.5.
For each topology we choose four routers for which the packet counters should be im-
plemented. This will cover all routes packets could take as some routers are connected
in series, forwarding each packet they receive.
There are only four possible different results for the number of packets forwarded in
our networks. First is the router R1 in each topology, as this router is the entry point
to our loop after introducing a failure. Router R1 is in the unique position that it will
receive all packets sent over the loop twice, but will also receive all packets sent back
to host H1, e.g. acknowledgements sent by TCP.
The end point of the created loops is our second point of interest. This is router R2 for
our minimal topology, router R3 for the first failure path network and router R4 for
our second failure path network. They will receive all packets passing the loop only
once as they return them back to the sending router.
All routers in between our start and end point of the loop will forward each packet
passed into the loop twice, once "upwards" and once "downwards" to the start point.
As such each router in this position will also forward the exact same amount of packets.
In case of our minimal topology there is no router that fits this case. Router R2 is the

35

Chapter 4 Testing

only router in this position on our first failure path network. For our second failure
path network we get to choose between routers R2 and R3. We choose router R2.
The fourth and final point of interest is a router on the alternative path, which will
receive all packets in case of a failure. For our minimal topology this is either router R3
or R4 as both receive the same amount of packets. Because we only have four routers
in our minimal topology, we just start counters on all of them. In the first failure path
network we can choose between routers R4, R5 and R6 and in our second failure path
network we can choose between routers R5, R6, R7 and R8. We choose router R5 for
the first and router R7 for the second failure path network.
We execute a basic iperf bandwidth measurement prior to our packet flow measure-
ment to fill caches.
All packet flow measurements are run for 30 s with a log interval of 1 s. We add an ad-
ditional test using the same configuration but setting the flag in the measure_packet_flow
function to "udp".

4.3 Failures, FRR and FRMs

Each test is run for each topology in two versions, one with an intermediate failure and
one with a concurrent failure. Tests using an intermediate failure define two commands
for measurement, one before a failure and one after a failure. The test will execute
the first measurement, introduce the failure by running the "connection_shutdown"
command described in connection_shutdown in section 3.1.5 and then run the second
measurement automatically. In case of a concurrent failure the measurement is started
and the failure is introduced during the run-time of the measurement.
Each of these tests is also run once only using FRR and once using FRR and our
implementation of ShortCut.

36

5
Evaluation

In this chapter we evaluate tests that were run using our test framework in Mininet.
The tests were performed as described in 4 with a bandwidth limit on each link of
100 Mbps. We use an additional delay of 5 ms per link in our latency tests - other tests
do not use a delay.
The evaluations are sorted by topology. For each topology we measured the bandwidth,
bandwidth with a concurrent data flow, latency, TCP packet flow and UDP packet flow.
We execute each test once with FRR active in the corresponding section With FRR and
once with FRR and our implementation of ShortCut active in the corresponding section
With FRR and ShortCut.
We start with our minimal network in section 5.1, followed by the evaluation of two
networks with longer "failure paths", measuring the influence of additional nodes in
looped paths in section 5.2. Lastly we discuss our results in section 5.3.

5.1 Minimal network

In this section we will evaluate the tests performed on our minimal topology, starting
with an evaluation of the bandwidth measurements in section 5.1.1. We continue to
evaluate the tests measuring the influence of an additional data flow on the looped
path in section 5.1.2. In section 5.1.3 we then evaluate our latency tests. Lastly we
evaluate our packet flow measurements using a TCP transfer in section 5.1.4 and a
UDP transfer in section 5.1.5.

5.1.1 Bandwidth

We performed multiple tests of influences to the bandwidth with occurring failures.
These were run using iperf and a logging interval of 0.5 s. All data was collected from
the output of the iperf server.
The first tests evaluated were run using only a FRR mechanism in With FRR. We then
evaluate the tests run with a FRR mechanism and an implementation of ShortCut in
With FRR and ShortCut.

37

Chapter 5 Evaluation

H1

H2

H4

R1

R2

R3

R4

planned failure point

switch

Figure 5.1: Minimal network

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

TCP Bandwidth before failure

(a) Bandwidth before a failure

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

TCP Bandwidth after failure

(b) Bandwidth after a failure

Figure 5.2: Bandwidth measured with iperf from H1 to H4

With FRR

We performed a TCP bandwidth test on the minimal network, a topology with 4
routers and 3 hosts. The failure occurred after the first run and before the second
run of the test in fig. 5.2. The bandwidth does not change between runs. This is to
be expected as additional hops on the path of the packet do not influence the total
throughput that can be achieved, and while the looped path is passed by the traffic
in both directions, the duplex nature of ethernet connections does not impose any
limitations in this regard.

In fig. 5.3 however we introduced the failure while the bandwidth test was running.
The test was run for 30 s and the failure was introduced at around 15 seconds, which
caused no visible performance drop. However in some executions of this test the
performance dropped when introducing the failure and the log output of the sending
client reported the need to resend up to 100 packets. Because this behaviour is only
occurring sporadically, we assume this to be a timing issue.

38

5.1 Minimal network

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

TCP Bandwidth with concurrent failure

Figure 5.3: Bandwidth measured for 30 seconds, introducing a failure after 15 seconds

When the connection between routers is cut, our test framework uses the Mininet
python API to deactivate the corresponding interfaces on both affected routers. This is
done in sequence. In this example the interface on router R2 was deactivated first and
the interface on router R4 was deactivated second. We implemented this behaviour
after observing the default behaviour of the Mininet network. If the connection between
e.g. router R2 and router R4 was only cut by deactivating the interface on router R4,
router R2 would not recognize the failure and would loose all packets sent to the
link. Because we deactivate the interfaces in sequence and the Mininet python api
introduces delay to the operation, the interface on R2 will be deactivated while the
interface on R4 will continue receiving packets already on the link and will continue
sending packets to the deactivated interface on R2 for a short period of time. All
packets sent to R2 in this time period will be lost. But because the iperf server itself
does not send any actual data, but only Acknowledgements (ACK) for already received
data, only ACKs are lost in the process.
TCP (Information Sciences Institute - University of Southern California 1981) however
does not necessarily resend lost ACKs, and the client does not necessarily resend all
packets for which he did not receive an ACK. Data for which the ACKs were lost
could still be implicitly acknowledged by the server if they e.g. belonged to the same
window as following packets and the ACKs for these packets were received by the
client. This could cause a situation in which the server already received data, but the
client only receives a notification of the success of the transfer with a delay.
This could cause some test runs to produce more packet loss than others, with most
transfers experiencing no packet loss at all.
In our further tests we observed that the bandwidth alone does not change heavily
when using different types of topologies. This is why we omit the evaluation of the
bandwidth in further topologies.

With FRR and ShortCut

As can be seen in fig. 5.4 and fig. 5.5, using ShortCut had no further influence on
the achieved throughput. This is to be expected, as longer or shorter paths will only

39

Chapter 5 Evaluation

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

TCP Bandwidth before failure

(a) Bandwidth before a failure

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

TCP Bandwidth after failure

(b) Bandwidth after a failure

Figure 5.4: Bandwidth measured with iperf from H1 to H4 using ShortCut

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

TCP Bandwidth with concurrent failure

Figure 5.5: Bandwidth measured for 30 seconds, introducing a failure after 15 seconds using
ShortCut

40

5.1 Minimal network

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(a) Bandwidth before a failure

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(b) Bandwidth after a failure

Figure 5.6: Bandwidth with concurrent data transfer on H2 to H1

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

Figure 5.7: Bandwidth H1 to H4 with concurrent data transfer on H2 to H1 - failure occuring
after 15 seconds

influence throughput if e.g. a link with a lower bandwidth is contained in an additional
path.

5.1.2 Bandwidth with concurrent data flow

In this test we evaluated the bandwidth between hosts H1 and H4 with a concurrent
data transfer between hosts H2 and H1. Both transfers were run with a limitation of
100 Mbps, which constitutes the maximum allowed bandwidth in this test.
The first tests evaluated were run using only a FRR mechanism in With FRR. We then
evaluate the tests run with a FRR mechanism and an implementation of ShortCut in
With FRR and ShortCut.

With FRR

Before a failure, as can be seen in fig. 5.6a, the throughput is at around 100 Mbps
which is our current maximum. While the additional transfer between hosts H2 and
H1 does in fact use some of the links that are also used in our iperf test, namely the
link between routers R1 to R2 and host H1 to R1, it does so in a different direction.

41

Chapter 5 Evaluation

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(a) Bandwidth before a failure

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(b) Bandwidth after a failure

Figure 5.8: Bandwidth with concurrent data transfer on H2 to H1 using ShortCut

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

Figure 5.9: Bandwidth H1 to H4 with concurrent data transfer on H2 to H1 - failure occuring
after 15 seconds using ShortCut

While the data itself is sent from hosts H1 to H4 over H2, only the TCP ACKs are
sent on the route back. Data from hosts H2 to H1 is sent from routers R2 to R1 and
therefore only the returning ACKs use the link in the same direction, not impacting
the achieved throughput.
If a failure is introduced however, traffic from host H1 loops over router R2 using up
bandwidth on a link that is also passed by the additional data flow. Therefore we expe-
rience a huge performance drop to around 20 Mbps to 30 Mbps, while the additional
data flow drops in performance to around 80 Mbps as can be seen in fig. 5.6b. From
a network perspective, this results in a combined loss of 50% throughput. While the
amount of traffic sent through the network before the failure amounted to 200 Mbps,
it now dropped down to a combined 100 Mbps.

With FRR and ShortCut

When activating our implementation of ShortCut no significant change of values can
be observed. This is due to the removal of the looped path, effectively allowing both
data transfers to run on full bandwidth. This completely restores the original traffic
throughput achieved by both data transfers of 200 Mbps.

42

5.1 Minimal network

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H4 before failure

(a) Latency before a failure

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H4 after failure

(b) Latency after a failure

Figure 5.10: Latency measured with ping

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H4 with concurrent failure

Figure 5.11: Latency with a concurrent failure after 15 seconds

5.1.3 Latency

In the following sections we evaluate the latency measurements run on the minimal
topology with 4 routers and 3 hosts first with only FRR in section With FRR and then
with our implementation of ShortCut running in section With FRR and ShortCut.

With FRR

As each link adds 5 ms of delay and ping logs the difference in time between sending
a packet and receiving an answer, the approximate delay would be the amount of
links passed N multiplied with the delay per link. In our test network there are 6 links
between hosts H1 and H4. Because these links are passed twice, one time to host H4
and one time back to host H1, this results in an approximate delay of 60 ms.
The test run confirmed these assumptions. As can be seen in fig. 5.10a a ping on the
network without failure took an average of around 65 ms with slight variations. The
additional 5 ms are most likely caused in the routing process on the routers.
When introducing a failure however, additional links are passed on the way from host
H1 to H4. Instead of 6 links passed per direction, the network now sends the packets
on a sub-optimal path which adds 2 passed links from router R1 to R2 and back. These

43

Chapter 5 Evaluation

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H4 before failure

(a) Latency before a failure

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H4 after failure

(b) Latency after a failure

Figure 5.12: Latency measured with ping using ShortCut

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H4 with concurrent failure

Figure 5.13: Latency with a concurrent failure after 15 seconds with ShortCut

are only passed when sending packets to host H4, packets returning from H4 will not
take the sub-optimal path. This would, in theory, add around 10 ms of delay to our
original results.

As can be seen in fig. 5.10b this is also the case. With an average of around 76 ms of
latency the results show an additional delay of around 11 ms when taking the sub-
optimal path. The discrepancy between our assumption of 10 ms and the actual added
11 ms might be caused by the additional router that is passed in the direction to host
H4.

When the failure is introduced concurrent to a running test, the latency spikes to
around 94 ms for one packet as can be seen in fig. 5.11. This might be caused by the
deactivation of interfaces using ifconfig and a packet arriving just at the moment of
reconfiguration, as packets are sent every 0.5 s and the failure is introduced exactly 15 s
after starting the measurement. Depending on the time ifconfig takes to reconfigure
this would cause the packet to remain in the queue until the reconfiguration is finished,
adding to the latency measured in this one instance.

44

5.1 Minimal network

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(a) TCP packets flow before a failure

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(b) TCP packets flow after a failure

Figure 5.14: TCP Packets on all routers measured with nftables counters

With FRR and ShortCut

Our implementation of ShortCut using nftables does not seem to add any additional
delay to packet transfers as is evident when comparing the average delay produced
before a failure in fig. 5.10a and fig. 5.12a.
When introducing the failure the latency does not change as can be seen in fig. 5.12.
This is caused by the removal of the looped path and therefore the additional delay
each packet would be subjected to.
The spike in latency which can be seen in fig. 5.13, occurring when the failure is
introduced can be attributed to the same possible scenario as explained in section 5.1.3,
which is most likely a timing issue with the introduction of the failure on the routers
R2 and R4 and simultaneously sent ICMP packets.

5.1.4 Packet flow - TCP

To show the amount of TCP packets being forwarded on each router, we measured the
packet flow on all routers of this topology. This is done by counting TCP packets with
nftables while a concurrent data transfer is started from host H1 to H4. The results
include the amount of packets forwarded on each router per second. This was done
with an intermediate and concurrent failure for a network with FRR in With FRR, as
well as a network with an additional implementation of ShortCut in With FRR and
Shortcut.

With FRR

The results in the network before a failure are as to be expected and can be seen in
fig. 5.14a. Each router on the route from host H1 to H4, which includes routers R1, R2
and R4, report the same amount of packets at each point of measurement. While the
packet count fluctuates during the measurement no packet loss was reported and the
bandwidth was at an average of 95 Mbps during the whole run of the test. This is why
we assume that the fluctuations can be attributed to the mechanisms used in iperf.
After a failure all four routers receive packets as can be seen in fig. 5.14b, but router R1
now receives most packets with an average of around 1500 packets while routers R3

45

Chapter 5 Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

Figure 5.15: TCP packet flow on all routers with failure after 15 seconds

and R4 receive roughly the same amount of packets as before the failure at an average
of around 1000 packets. Router R2 receives the least packets with an average of around
500 packets.
This is most likely caused by the looped path and the implications for packet travel
this has. Router R1 receives all packets that are sent to host H4 from H1 twice, once
sending them to router R2 and the second time when receiving the packets back from
router R2 to send them to router R3. But while all packets sent from host H1 pass
router R1 twice, ACKs sent back by the iperf server on H4 will only pass R1 once,
as R1 would not send packets with H1 as destination to R2. Router R2 on the other
hand only receives packets sent to H4 but none of the ACKs sent back. This is why,
when compared to the average packet count of all routers in fig. 5.14a, R2 receives
roughly half of all packets a router would normally receive as TCP specifies that for
each received packet TCP will send an ACK as answer. This also explains why router
R1 forwards an average of around 1500 packets per second, forwarding data packets
with around 500 packets per second twice and forwarding acknowledgement packets
once with also 500 packets per second, producing an additional 50% load on the router.
Aside from the changed path and therefore the inclusion of router R3 in this path,
routers R3 and R4 are unaffected by the failure, forwarding each packet once.
When causing a failure while the bandwidth measurement is running, the failure itself
will cause a sudden drop to 0 packets forwarded for a short amount of time. This can
be attributed to the time the routers take to change their configuration. The nftables
counter uses the "forward" netfilter hook which is called in a pre-defined phase in
the network stack of linux. Packets which are logged in the forwarding state already
received a routing decision, but because Mininet needs some time to reconfigure the
interface to shut down a connection, imitating a failure, the packets have to wait for
the router to be ready again.
This behaviour has also been observed when measuring the latency and introducing a
failure concurrently in fig. 5.11, adding delay to packets to be delivered in the moment
of failure.
Reconfiguration of routers in Mininet does not reset the nftables counters either, which
was confirmed in a quick test counting packets of an iperf transfer and shutting down

46

5.1 Minimal network

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(a) TCP packet flow before a failure

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(b) TCP packet flow after a failure

Figure 5.16: TCP Packets on all routers measured with nftables counters using Shortcut

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

Figure 5.17: TCP packet flow on all routers with failure after 15 seconds using ShortCut

an interface on the same router. The packet count did not change after shutting down
the interface.

With FRR and ShortCut

When running the TCP packet flow measurements with an implementation of ShortCut
running on the network however, the results change drastically, and as expected all
packets sent by the iperf transfer are forwarded by router R2 on the original route.
After the failure was introduced the router R2 does not forward any packets. ShortCut
has effectively cut out router R2 from the route, forwarding packets from router R1 to
R3 directly. All remaining routers R1, R3 and R4 now receive all packets and no router
forwards any packets twice.

5.1.5 Packet flow - UDP

We repeated the packet flow test in section 5.1.4 using UDP to inspect the differences
caused by the two protocols.

47

Chapter 5 Evaluation

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(a) UDP packet before a failure

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(b) UDP packet flow after a failure

Figure 5.18: UDP packet flow on all routers measured with nftables counters

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

Figure 5.19: UDP Packet flow on all routers with failure after 15 seconds

The first tests evaluated were run using only a FRR mechanism in With FRR. We then
evaluate the tests run with a FRR mechanism and an implementation of ShortCut in
With FRR and ShortCut.

With FRR

When running the packet flow test measuring UDP packets the amount of packets
was much higher compared to TCP packets. iperf uses different packet sizes for each
protocol, sending TCP packet with a size of 128 kB and UDP packets with only a size
of 8 kB (Dugan et al. 2016). The same amount of data transmitted should therefore
produce a packet count roughly 16 times higher when using UDP compared to TCP.
TCP however, as can be seen in fig. 5.14a, causes the routers to log around 1000 packets
per second when running a bandwidth measurement limited by the overall bandwidth
limit on the network of 100 Mbit s−1. A naive assumption would be that UDP should
sent 16000 packets per second over the network, but that does match with our test
results seen in fig. 5.18a, where only around 7800 packets per second are logged on
the routers.
The reason for this is also the key difference between TCP and UDP: TCP uses ACKs
to confirm the transmission of packets. These are packets returning from the iperf

48

5.1 Minimal network

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(a) UDP packet flow before a failure

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

(b) UDP packet flow after a failure

Figure 5.20: UDP packet flow on all routers measured with nftables counters using ShortCut

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r4

Figure 5.21: UDP packet flow on all routers with failure after 15 seconds using ShortCut

server to the client. For each received data package, the server will send back an ACK.
If no ACK is sent for a packet, the client will resend the missing packet. This causes
the network to transmit twice the amount of packets, one half containing the actual
data and one half only containing ACKs. UDP however will just blindly send packets
on their way and does not evaluate whether they actually reached their destination.
Therefore all UDP packets contain data and no additional packets for confirmation or
congestion control etc. are sent over the network.
Because UDP does not send ACKs the results observed after a failure in fig. 5.18b are
very telling, with routers R2, R3 and R4 all forwarding the same amount of packets
and router R1 forwarding exactly double the amount of packets.

With FRR and ShortCut

When using ShortCut in a UDP packet flow measurement, the negative consequences
of the failure disappear. While in fig. 5.18a routers R1, R2 and R4 receive all packets on
the original route, the load switches after a failure from router R2 to R3. As expected,
the ShortCut implementation has cut out the looped path and restored the original
functionality on an alternative route.

49

Chapter 5 Evaluation

H1 H6

R1

R2

R4 R5

R6

H3

R3

planned failure point

switch

(a) Failure path with 2 hops

H1 H8

R1

R2 R3

R5 R6 R7

R8

H4

R4

planned failure point

switch

(b) Failure path with 3 hops

Figure 5.22: Networks with longer failure paths

5.2 Failure path networks

In this section we evaluate the results for our two failure path networks seen in fig. 5.22.
The networks were created so that the additional hops on a looped path would be
longer, effectively simulating a more severe failure in terms of affected routes.
Most tests however did not produce significantly different results to the minimal
network, evaluated in section 5.1, which is why we will focus on differences between
the two topology classes.
In section 5.2.1 we evaluate the influence of longer failure paths on achieved band-
widths in the network. Furthermore we investigate the influence of two concurrent
data flows on the looped path in section 5.2.2. The impact of a longer looped path on
the latency in the networks is evaluated in section 5.2.3. Lastly we inspect packet flow
in our failure path networks using a TCP transfer in section 5.2.4 and using an UDP
transfer in section 5.2.5.

5.2.1 Bandwidth

When measuring the bandwidth of our networks with longer failure paths the re-
sults were similar to those of the bandwidth measurement in the minimal network,
described in section 5.1.1.
The addition of hops to the failure path did not have an effect on the bandwidth. It
has to be noted however that the packets sent through the looped path will potentially
block other data flows, reducing the overall bandwidth of both data flows. This is
evaluated in section 5.2.2.

5.2.2 Bandwidth with concurrent data flow

We started two concurrent data flows using iperf. In case of a failure, these two data
flows would influence each other.
The first tests evaluated were run using only a FRR mechanism in With FRR. We then
evaluate the tests run with a FRR mechanism and an implementation of ShortCut in
With FRR and ShortCut.

50

5.2 Failure path networks

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(a) Bandwidth before a failure

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(b) Bandwidth after a failure

Figure 5.23: Bandwidth with concurrent data transfer on H3 to H1

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

Figure 5.24: Bandwidth H1 to H6 with concurrent data transfer on H3 to H1 - failure occuring
after 15 seconds

With FRR

Similar to the the results for our minimal network in section 5.1.2, the addition of
a second measurement running concurrently on the looped path does not reduce
throughput for both data flows as can be seen in fig. 5.23a.
When introducing a failure however the two data flows use all links from router R3
to router R1 simultaneously. They effectively have to split the available bandwidth,
reducing the overall throughput by 50% as can be seen in fig. 5.23b, but there is no
impact on the available bandwidth unique to the longer failure paths. This is why we
only added the graphs for the smaller variant shown in fig. 5.22a.
Introducing the failure concurrently to the data transfer causes both bandwidths to
abruptly drop, which can be seen in fig. 5.24. Although the two data flows distribute
the bandwidth differently, they achieve an overall throughput of 100 Mbps. We assume
that the incoherent distribution of bandwidth is caused by the timing of the data
transfers.
The data transfer in fig. 5.23b already starts with the failure in place. Because the iperf
instance producing the additional data flow is started slightly before our main data
flow, Mininet seems to allocate more bandwidth to this transfer. The graph in fig. 5.23b

51

Chapter 5 Evaluation

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(a) Bandwidth after failure - 1st network

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

M
b
it

(s
)

Time in seconds

main data �ow
additional data �ow

(b) Bandwidth after failure - 2nd network

Figure 5.25: Bandwidth with concurrent data transfer using ShortCut

also suggests that both bandwidths approximate each other, suggesting that Mininet
tries to, over time, allocate both transfers the same bandwidth.
Our measurement with a failure occurring concurrent to our data transfers however
evens the playing field. Both iperf instances already send data over the network. This
could explain the overall more evenly distributed bandwidth, as well as the main data
flow even overtaking the additional data flow.

With FRR and ShortCut

Using ShortCut allows both topologies to restore the full bandwidth for both transmis-
sions, as the looped path is cut, causing the data transfers to not interfere with each
other.

5.2.3 Latency

We measured the latency between host H1 and H6 for our first failure path network
and between host H1 and H8 for our second failure path network.
The first tests evaluated were run using only a FRR mechanism in With FRR. We then
evaluate the tests run with a FRR mechanism and an implementation of ShortCut in
With FRR and ShortCut.

With FRR

The additional hops in our failure path networks add, as expected, latency to the
measurements, as each Mininet link in our tests add a delay of 5 ms. When compared
to our minimal network evaluated in section 5.1.3 the first failure path network adds
exactly 5 ms, shown in fig. 5.26a for our additional hop. The second failure path
network adds an extra 5 ms on top, which can be seen in fig. 5.26c.
When introducing a failure our first failure path network adds around 20 ms of latency
as can be seen in fig. 5.26b. fig. 5.26d shows that the second failure path network adds
an additional 10 ms to the latency in case of a failure, adding 30 ms in total. This is
caused by the additional links on the longer path. Because only ICMP echo requests

52

5.2 Failure path networks

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H6 before failure

(a) Latency before a failure - 1st network

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H6 after failure

(b) Latency after a failure - 1st network

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H8 before failure

(c) Latency before a failure - 2nd network

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H8 after failure

(d) Latency after a failure - 2nd network

Figure 5.26: Latency measured with ping on both failure path networks

53

Chapter 5 Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H6 before failure

(a) Latency before failure on 1st failure path net-
work using ShortCut

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H6 after failure

(b) Latency after failure on 1st failure path network
using ShortCut

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H8 before failure

(c) Latency before failure on 2nd failure path net-
work using ShortCut

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

L
a
te

n
c
y
 i
n
 m

il
li
s
e
c
o
n
d
s

Time in seconds

Latency from H1 to H8 after failure

(d) Latency after failure on 2nd failure path net-
work using ShortCut

Figure 5.27: Latency measured with ping on both failure path networks using ShortCut

and not replies use the looped path, as packets returning from either host H6 or H8
are not forwarded to router R2 when arriving on router R1, the additional latency
on the network will always be 10 ms for each link contained on the looped path. The
additional link is passed twice by each ICMP echo request.

With FRR and ShortCut

Similar to our results when measuring the minimal topology in section 5.1.3, ShortCut
is able to restore the original latency after a failure, independent of the length of the
cut looped path, as can be seen in fig. 5.27.

5.2.4 Packet flow - TCP

We measure the amount of TCP packets forwarded in our failure path networks. For
this we attach nftables counters to for routers in each of these topologies.
The first tests evaluated were run using only a FRR mechanism in With FRR. We then
evaluate the tests run with a FRR mechanism and an implementation of ShortCut in
With FRR and ShortCut.

54

5.2 Failure path networks

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r5

(a) TCP packet flow after a failure - 1st network

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r4
r7

(b) TCP packet flow after a failure - 2nd network

Figure 5.28: TCP Packets on all routers measured with nftables counters

With FRR

Similar to our observations in section 5.1.4 only TCP packets bearing data are passed
into the loop, as returning ACKs from the iperf server are forwarded to the host H1
directly. Router R1 however forwards an additional 50% of packets, forwarding packets
containing data twice on their way to the iperf server and forwarding returning ACKs
once back to the host H1. The router R3 in our first failure path network and the router
R4 in our second failure path network both only forward each TCP packet bearing
data once. Both of these results are shown in fig. 5.28.
The implications for the network are however quite more severe the more routers
are contained on the looped paths. Because each router that is not the start and end
point of our loop path forwards each packet in the loop twice, the amount of packets
forwarded relative to the total amount of packets forwarded in a healthy network will
steadily increase.
For our first failure path this means an additional 50% of packets forwarded, assuming
that routers R4 and R6 forward the same amount of packets as router R5.
In our second failure path network the amount of packets forwarded even increases
by 60%, assuming that router R3 forwards the same amount of packets as router R2
and that routers R5, R6 and R8 forward the same amount of packets as router R7.

With FRR and ShortCut

ShortCut was able to cut off the loop and therefore reduce the amount of packets for-
warded to the original amount. Because this is similar to the behaviour in section 5.1.4
we omitted additional graphs from our results.

5.2.5 Packet flow - UDP

We used the same test function as in section 5.2.4 but with the "udp" flag to run a
packet flow measurement with UDP.
The first tests evaluated were run using only a FRR mechanism in With FRR. We then
evaluate the tests run with a FRR mechanism and an implementation of ShortCut in
With FRR and ShortCut.

55

Chapter 5 Evaluation

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r3
r5

(a) UDP packet flow after a failure - 1st network

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

P
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time in seconds

r1
r2
r4
r7

(b) UDP packet flow after a failure - 2nd network

Figure 5.29: UDP packet flow on four routers for both failure path networks after a failure

With FRR

Falling in line with our results in our TCP packet flow measurement in section 5.2.4,
a longer failure path adds to the overall workload of the network. This is shown in
fig. 5.29. Because UDP does not send ACKs back to the sender, all packets produced
by the UDP data transfer are passed through the looped path.
Because router R1 and all routers up until the endpoint of the loop will forward the
UDP packets twice, the amount of packets forwarded on the first failure path network
increases by 100%. When the failure path is extended as is the case in our second
failure path network, the amount of packets forwarded on the network even increases
by 120%.

With FRR and ShortCut

Similar to the behaviour of ShortCut in our TCP packet flow measurements, it was
able to restore the network to its original amount of packets forwarded on the routers.
Because this behaviour does not add any room for interpretation, we omitted graphs
for these measurements from our results.

5.3 Discussion

In this section we discuss our results in the previous measurements. We proceed
by comparing the results of different measurement types using the three topologies.
For each measurement type we collect the implications of a failure for the network
and whether ShortCut is able to enhance results. We start with the bandwidth in
section 5.3.1, continuing to the bandwidth with a second data flow in section 5.3.2.
After that we talk about our latency measurements in section 5.3.3 followed by our
packet flow measurements using TCP and UDP in section 5.3.4.

56

5.3 Discussion

5.3.1 Bandwidth

A failure in our topologies did not have an impact on our bandwidth measurement
results. The throughput of a network and therefore the bandwidth that can be achieved
on a path is not influenced by additional hops on a route, even though these might
increase latency. This is, of course, also true for longer failure paths. As long as no
additional data flows are sent through the network the bandwidth is not impacted
and ShortCut has no need to restore performance.

5.3.2 Bandwidth with concurrent data flow

Measuring the achieved bandwidth with a concurrent data flow shows that in case a
second data flow is running on the network, the looped path now has a real perfor-
mance impact. The throughput is split between both data flows on all links that are
looped. This causes an overall throughput loss of 50%, as the links included in the
looped path create a bottleneck for both data flows.
Using ShortCut under such circumstances will fully restore performance to the state
without failure. It has to be noted that, although in our measurements both data flows
achieved a maximum throughput with ShortCut, the alternative route still could be
used by other data flows which might be influenced. This is however also true for the
network when not using ShortCut.
Longer failure paths showed no additional impact on the performance and ability of
ShortCut to restore the throughput. A longer failure path will have an adverse effect
in a realistic network. Because more links experience additional traffic, even more data
flows might be affected by the failure. The usage of ShortCut would therefore be more
beneficial the more links can be removed from looped paths.

5.3.3 Latency

Sending packets over additional hops will without a doubt increase the latency. This is
confirmed in our results. Longer failure paths would of course increase this additional
delay. Because ShortCut was able to cut off the looped path, it was able to restore the
original latency on our test networks.
As such ShortCut provides a reliable way to optimize alternative routes, especially for
time sensitive data like VOIP.

5.3.4 Packet flow

Our packet flow measurements using a TCP data transfer showed the amount of
packets forwarded on each router. A naive assumption would be that the routers on
a looped path would have to forward each packet twice and therefore have a 100%
increased load on them. This is, however, not true for TCP as only packets sent to the
receiving device are forwarded through our loop in our topologies. ACKs returning
from the iperf server are not sent through the looped path. Because of this the routers
on the looped path actually only forward half of all packets. All routers on the failure

57

Chapter 5 Evaluation

path, except for the router at the end, will forward all packets sent into the loop twice.
While the actual amount of packets does not change for these routers, as ACKs are not
sent into the loop, they add onto the overall load of the network. The router directly
attached to the broken link will just forward packets once.
It has to be noted that these packets all contain data and therefore do have full impact
on the bandwidth of links involved in the looped path as discussed previously in
section 5.3.2.
The entry point of the loop, which in our topologies is always router R1, forwards
each packet containing data twice and in addition to this the acknowledgements once,
increasing the workload for the router by 50%. Longer failure paths do not influence
this behaviour, they do however add more devices which will be affected by the failure
and therefore also the amount of packets forwarded on the network in total.
This adds up to 33% more packets forwarded in our minimal network, 50% more
packets forwarded in our first failure path network and a 60% increase in forwarded
packets in our longer second failure path network.
When using UDP for our data transfer and measuring the packets forwarded on
routers, the differences between TCP and UDP become quite obvious. As UDP does
not send ACKs on successful transmission, all looped routers except for the router
directly attached to the failure, e.g. router R4 for the second failure path network, will
forward all packets twice.
For our minimal network this meant an increase in packets forwarded on the network
by 50%. With increasing length of the failure path the impact on the network grew
worse, with a 100% increase of packets forwarded for our first failure path network
and a 120% increase for our longer second failure path network.
For all transfers, be it using TCP or UDP, ShortCut is able to cut the looped path and
therefore restore the network to a state in which only a minimum amount of routers
forward the same amount of packets. No more additional packets are forwarded,
alleviating the burden placed on the network. ShortCut proves to be a reliable way to
reduce traffic caused by failures.

58

6
Conclusion

In this chapter we conclude our findings in section 6.1. We furthermore discuss fur-
ther extensions of this work and how our results could be made more robust for
interpretation in section 6.2.

6.1 Results of this work

We provide an entry point into the topic of modern networks, resilient routing and
FRMs.
To this end we explain the implementation of a test framework using Mininet, incorpi-
rate a simple FRR mechanism and provide a simple example for an implementation
of ShortCut.
We also show that FRMs can have a meaningful impact on networks, restoring band-
width, removing additional delays and reducing the unnecessary workload for routers
through testing in our test framework. ShortCut has proven to be an effective method
in relieving additional burden imposed on networks after a failure, reducing delays
by up to 38% and additional packet forwarding by up to 120%.

6.2 Future work

During our work on this thesis we discovered more ways to further investigate FRMs
and extend our existing test framework. In addition to this we also discovered more
methods to produce more robust results. We discuss possible extensions of our test
framework in section 6.2.1. The addition of CPU usage measurements on Mininet
hosts discussed in section 6.2.2 could also provide additional insights into our results.

6.2.1 Testing framework

We provide a test framework which can be used to performing tests on Mininet net-
works automatically. The framework is, however, still a prototype and could be ex-
tended for broader usage.

59

Chapter 6 Conclusion

One easy extension would be the addition of tests using UDP. While we already
implemented an UDP data transfer for a packet flow measurement, additional imple-
mentations using UDP in e.g. bandwidth testing could prove worthwhile as UDP has
no congestion control, possibly causing packet queue overflows in routers.
This includes the addition of a selection of measurement tools. All measurements were
done using one specific tool, depending on the type of measurement, namely iperf for
bandwidth measurements and the production of data streams and ping for latency
tests. iperf could be replaced with a multitude of software packets and some members
of the Mininet community have suggested that e.g. netperf (Jones and Contributors
2015) would provide more accurate results. This could be evaluated in further detail.
Because of the time constrains of this work we were unable to test in high volumes,
even though we experienced some fluctuations in our measurements. To increase the
reliability of our results the tests could be run e.g. a hundred times. This could also
be integrated into the testing framework with an additional argument specifying in
which quantity the test should be run.
We evaluate three pretty similar topologies, as well as a simple implementation of FRR
and an implementation of the FRM ShortCut. Depending on the requirements of a
network, an e.g. full topology with all routers inter-connected might be a good starting
point for further testing. This should go hand in hand with the implementation of an
automatic routing and a more strategic deployment of FRR and FRMs.
As described in section 2.3.5 there are also many different FRMs which could be
implemented in Mininet and tested using our test framework.
To further professionalize the implementation of FRMs they could be implemented
using P4, overwriting the default behaviour of Mininet routers. This would provide a
version of e.g. ShortCut that could be deployed in a real network in a short amount of
time.

6.2.2 Measuring CPU usage of hosts in Mininet

Tests in this work are done with a limit of 100 Mbps imposed on the links, in tests
without a limit to the bandwidth values of around 40 Gbps were reached. While this
should remove any fluctuations that could be caused by additional operations either
on the virtual machine or the host system, it does not completely ensure proper distri-
bution of processing power. For this we could run CPU usage measurements while the
actual tests are running. This would enable us to further interpret results and possible
spikes in delay or bandwidth.

60

List of Figures

2.1 SDN network architecture . 6
2.3 Resilient Routing Layers - visualization 12
2.4 Concept of ShortCut . 13
2.5 Link usage . 18

3.1 Exemplary latency test run with automatic plotting 27
3.2 Exemplary packet flow test run with automatic plotting of multiple

graphs in a figure . 28

4.1 A minimal testing network using 4 routers, 3 switches and 3 hosts . . . 31
4.2 IP address selection of (a) a host address and (b) an interface address in

a router to router subnet . 33
4.3 A network with a failure path length of 2 links and 2 routers 33
4.4 A network with a failure path length of 3 links and 3 routers 33

5.1 Minimal network . 38
5.2 Bandwidth measured with iperf from H1 to H4 38
5.3 Bandwidth measured for 30 seconds, introducing a failure after 15 seconds 39
5.4 Bandwidth measured with iperf from H1 to H4 using ShortCut 40
5.5 Bandwidth measured for 30 seconds, introducing a failure after 15 sec-

onds using ShortCut . 40
5.6 Bandwidth with concurrent data transfer on H2 to H1 41
5.7 Bandwidth H1 to H4 with concurrent data transfer on H2 to H1 - failure

occuring after 15 seconds . 41
5.8 Bandwidth with concurrent data transfer on H2 to H1 using ShortCut . 42
5.9 Bandwidth H1 to H4 with concurrent data transfer on H2 to H1 - failure

occuring after 15 seconds using ShortCut 42
5.10 Latency measured with ping . 43
5.11 Latency with a concurrent failure after 15 seconds 43
5.12 Latency measured with ping using ShortCut 44
5.13 Latency with a concurrent failure after 15 seconds with ShortCut 44
5.14 TCP Packets on all routers measured with nftables counters 45
5.15 TCP packet flow on all routers with failure after 15 seconds 46
5.16 TCP Packets on all routers measured with nftables counters using Shortcut 47
5.17 TCP packet flow on all routers with failure after 15 seconds using ShortCut 47
5.18 UDP packet flow on all routers measured with nftables counters 48
5.19 UDP Packet flow on all routers with failure after 15 seconds 48
5.20 UDP packet flow on all routers measured with nftables counters using

ShortCut . 49

61

List of Figures

5.21 UDP packet flow on all routers with failure after 15 seconds using Short-
Cut . 49

5.22 Networks with longer failure paths . 50
5.23 Bandwidth with concurrent data transfer on H3 to H1 51
5.24 Bandwidth H1 to H6 with concurrent data transfer on H3 to H1 - failure

occuring after 15 seconds . 51
5.25 Bandwidth with concurrent data transfer using ShortCut 52
5.26 Latency measured with ping on both failure path networks 53
5.27 Latency measured with ping on both failure path networks using ShortCut 54
5.28 TCP Packets on all routers measured with nftables counters 55
5.29 UDP packet flow on four routers for both failure path networks after a

failure . 56

62

Bibliography

Alexey Kuznetsov (2011): iproute2. url: https://wiki.linuxfoundation.org/
networking/iproute2 (visited on 05/16/2022).

Alharbi, T., S. Layeghy, and M. Portmann (2017): “Experimental evaluation of the
impact of DoS attacks in SDN”. In: 2017 27th International Telecommunication Networks
and Applications Conference (ITNAC), pp. 1–6.

Ayuso, P. N., J. Kadlecsik, E. Leblond, F. Westphal, A. B. González, and P. Sutter
(2019): nftables. n.p. url: https://netfilter.org/projects/nftables/
(visited on 05/10/2022).

Bosshart, P., D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D.
Talayco, A. Vahdat, G. Varghese, and D. Walker (2014): “P4: Programming Protocol-
Independent Packet Processors”. In: SIGCOMM Comput. Commun. Rev. 44.3, pp. 87–
95.

Bundesnetzagentur Deutschland (2021): Jahresbericht 2020. n.p. url: https : / /
www.bundesnetzagentur.de/SharedDocs/Mediathek/Jahresberichte/
JB2020.html (visited on 05/16/2022).

Callon, R. (12–1990): OSI IS-IS for Routing in TCP/IP and Dual Environments. url:
https://datatracker.ietf.org/doc/html/rfc2328 (visited on 05/16/2022).

Chiesa, M., A. Kamisiński, J. Rak, G. Rétvári, and S. Schmid (2021): “A Survey of
Fast-Recovery Mechanisms in Packet-Switched Networks”. In: IEEE Communications
Surveys Tutorials 23.2, pp. 1253–1301.

Dridi, L. and M. F. Zhani (2016): “SDN-Guard: DoS Attacks Mitigation in SDN Net-
works”. In: 2016 5th IEEE International Conference on Cloud Networking (Cloudnet),
pp. 212–217.

Dugan, J., S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu (2016): iperf3. n.p. url:
https://iperf.fr/ (visited on 05/16/2022).

Gill, P., N. Jain, and N. Nagappan (2011): “Understanding network failures in data
centers: measurement, analysis, and implications”. In: Proceedings of the ACM SIG-
COMM 2011 Conference, pp. 350–361.

Haque, I. and M. A. Moyeen (2018): “Revive: A Reliable Software Defined Data
Plane Failure Recovery Scheme”. In: 2018 14th International Conference on Network
and Service Management (CNSM), pp. 268–274.

Information Sciences Institute - University of Southern California (1981): Transmis-
sion Control Protocol: RFC. url: https://www.rfc-editor.org/rfc/rfc793.

63

https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
https://netfilter.org/projects/nftables/
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Jahresberichte/JB2020.html
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Jahresberichte/JB2020.html
https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Jahresberichte/JB2020.html
https://datatracker.ietf.org/doc/html/rfc2328
https://iperf.fr/
https://www.rfc-editor.org/rfc/rfc793

Bibliography

Jones, R. and Contributors (2015): netperf. url: https://github.com/HewlettPackard/
netperf (visited on 05/11/2022).

Kuerban, M., Y. Tian, Q. Yang, Y. Jia, B. Huebert, and D. Poss (2016): “FlowSec: DOS
attack mitigation strategy on SDN controller”. In: 2016 IEEE International Conference
on Networking, Architecture and Storage (NAS), pp. 1–2.

Kvalbein, A., A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne (2005): “Fast recov-
ery from link failures using resilient routing layers”. In: 10th IEEE Symposium on
Computers and Communications (ISCC’05), pp. 554–560.

Lantz, Bob and the Mininet Contributors (2021): Mininet. url: http://mininet.
org/ (visited on 05/10/2022).

Liu, J., A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker (2013): “En-
suring connectivity via data plane mechanisms”. In: 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pp. 113–126.

Maaßen, F. (5/2022): “Comparison of Fast Recovery Methods: Git Repository”. Bach-
elor. Dortmund: TU Dortmund. url: https://git.cs.tu-dortmund.de/
frederik.maassen/ComparisonOfFastRecoveryMethodsInNetworks (vis-
ited on 05/16/2022).

Montag, C., K. Błaszkiewicz, R. Sariyska, B. Lachmann, I. Andone, B. Trendafilov,
M. Eibes, and A. Markowetz (2015): “Smartphone usage in the 21st century: who is
active on WhatsApp?” In: BMC Research Notes 8.1, p. 331.

Moy, J. et al. (4–1998): OSPF version 2. url: https://datatracker.ietf.org/
doc/html/rfc2328 (visited on 03/15/2022).

Muelas, D., J. Ramos, and J. E. L. de Vergara (2018): “Assessing the Limits of Mininet-
Based Environments for Network Experimentation”. In: IEEE Network 32.6, pp. 168–
176.

Nelakuditi, S., S. Lee, Y. Yu, and Z.-L. Zhang (2003): “Failure insensitive routing for
ensuring service availability”. In: International Workshop on Quality of Service, pp. 287–
304.

Oracle (2022): VirtualBox. url: https : / / www . virtualbox . org/ (visited on
05/11/2022).

Rak, J. and D. Hutchison, eds. (2020): Guide to disaster-resilient communication networks.
Ed. by J. Rak and D. Hutchison. Springer Nature.

Shukla, A. and K.-T. Foerster (2021): “Shortcutting Fast Failover Routes in the Data
Plane”. In: Proceedings of the Symposium on Architectures for Networking and Communi-
cations Systems, pp. 15–22.

Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti, Ste-
fano Vissicchio, and Laurent Vanbever (2019): “Blink: Fast Connectivity Recovery
Entirely in the Data Plane”. In: 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19). Boston, MA: USENIX Association, pp. 161–176.

64

https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
http://mininet.org/
http://mininet.org/
https://git.cs.tu-dortmund.de/frederik.maassen/ComparisonOfFastRecoveryMethodsInNetworks
https://git.cs.tu-dortmund.de/frederik.maassen/ComparisonOfFastRecoveryMethodsInNetworks
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://www.virtualbox.org/

Bibliography

url: https://www.usenix.org/conference/nsdi19/presentation/
holterbach.

van Rossum, G. and F. L. Drake (2009): Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace.

Wustenhoff, E. and S. BluePrints (2002): “Service level agreement in the data center”.
In: Sun Microsystems Professional Series 2.

65

https://www.usenix.org/conference/nsdi19/presentation/holterbach
https://www.usenix.org/conference/nsdi19/presentation/holterbach

*Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung")
for the Bachelor’s/ Master’s thesis is the official and legally binding version.

Eidesstattliche Versicherung

(Affidavit)

Name, Vorname
(surname, first name)

Matrikelnummer
(student ID number)

Bachelorarbeit
(Bachelor’s thesis)

Masterarbeit
(Master’s thesis)

Titel
(Title)

Ich versichere hiermit an Eides statt, dass ich die
vorliegende Abschlussarbeit mit dem oben genannten
Titel selbstständig und ohne unzulässige fremde Hilfe
erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie
wörtliche und sinngemäße Zitate kenntlich gemacht.
Die Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen.

I declare in lieu of oath that I have completed the
present thesis with the above-mentioned title
independently and without any unauthorized
assistance. I have not used any other sources or aids
than the ones listed and have documented quotations
and paraphrases as such. The thesis in its current or
similar version has not been submitted to an auditing
institution before.

Ort, Datum
(place, date)

Unterschrift
(signature)

Belehrung:
Wer vorsätzlich gegen eine die Täuschung über
Prüfungsleistungen betreffende Regelung einer
Hochschulprüfungsordnung verstößt, handelt
ordnungswidrig. Die Ordnungswidrigkeit kann mit einer
Geldbuße von bis zu 50.000,00 € geahndet werden.
Zuständige Verwaltungsbehörde für die Verfolgung
und Ahndung von Ordnungswidrigkeiten ist der
Kanzler/die Kanzlerin der Technischen Universität
Dortmund. Im Falle eines mehrfachen oder sonstigen
schwerwiegenden Täuschungsversuches kann der
Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5
Hochschulgesetz - HG -).

Die Abgabe einer falschen Versicherung an Eides statt
wird mit Freiheitsstrafe bis zu 3 Jahren oder mit
Geldstrafe bestraft.

Die Technische Universität Dortmund wird ggf.
elektronische Vergleichswerkzeuge (wie z.B. die
Software „turnitin“) zur Überprüfung von Ordnungs-
widrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis
genommen:

Official notification:
Any person who intentionally breaches any regulation
of university examination regulations relating to
deception in examination performance is acting
improperly. This offense can be punished with a fine of
up to EUR 50,000.00. The competent administrative
authority for the pursuit and prosecution of offenses of
this type is the Chancellor of TU Dortmund University.
In the case of multiple or other serious attempts at
deception, the examinee can also be unenrolled,
Section 63 (5) North Rhine-Westphalia Higher
Education Act (Hochschulgesetz, HG).

The submission of a false affidavit will be punished
with a prison sentence of up to three years or a fine.

As may be necessary, TU Dortmund University will
make use of electronic plagiarism-prevention tools
(e.g. the "turnitin" service) in order to monitor violations
during the examination procedures.

I have taken note of the above official notification:*

Ort, Datum
(place, date)

Unterschrift
(signature)

	Introduction
	Motivation
	State of the art
	Contribution

	Basics
	Modern networks
	Failure scenarios in modern networks
	Failures in data centers

	Resilient routing in modern networks
	Traditional routing protocols by taking the example of OSPF
	Security benefits and drawbacks of software-defined networks
	Resilience on the data plane
	Resilience on the control plane
	Fast Recovery Methods

	Creating a test environment
	Mininet
	Measuring performance
	Introducing failures

	Implementation
	Implementation of a testing framework
	Base components
	Routing configuration
	IP policy configuration
	Test configuration
	Implemented commands for measurements
	Plotting functions
	Command line interface

	Fast Re-Routing
	ShortCut Implementation
	Identifying failures
	Implementation using nftables

	Testing
	Topologies and Routing
	Minimum sized network
	Failure path topologies

	Measurements
	Bandwidth
	Latency
	Bandwidth link usage
	Packet flow

	Failures, FRR and FRMs

	Evaluation
	Minimal network
	Bandwidth
	Bandwidth with concurrent data flow
	Latency
	Packet flow - TCP
	Packet flow - UDP

	Failure path networks
	Bandwidth
	Bandwidth with concurrent data flow
	Latency
	Packet flow - TCP
	Packet flow - UDP

	Discussion
	Bandwidth
	Bandwidth with concurrent data flow
	Latency
	Packet flow

	Conclusion
	Results of this work
	Future work
	Testing framework
	Measuring CPU usage of hosts in Mininet

	Table of figures
	Bibliography
	Affidavit

