""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= We illustrate various embedding techniques on the digits dataset. """ # Authors: Fabian Pedregosa # Olivier Grisel # Mathieu Blondel # Gael Varoquaux # Guillaume Lemaitre # License: BSD 3 clause (C) INRIA 2011 # %% # Load digits dataset # ------------------- # We will load the digits dataset and only use six first of the ten available classes. from sklearn.datasets import load_digits digits = load_digits(n_class=6) X, y = digits.data, digits.target n_samples, n_features = X.shape n_neighbors = 30 # %% # We can plot the first hundred digits from this data set. import matplotlib.pyplot as plt fig, axs = plt.subplots(nrows=10, ncols=10, figsize=(6, 6)) for idx, ax in enumerate(axs.ravel()): ax.imshow(X[idx].reshape((8, 8)), cmap=plt.cm.binary) ax.axis("off") _ = fig.suptitle("A selection from the 64-dimensional digits dataset", fontsize=16) # %% # Helper function to plot embedding # --------------------------------- # Below, we will use different techniques to embed the digits dataset. We will plot # the projection of the original data onto each embedding. It will allow us to # check whether or digits are grouped together in the embedding space, or # scattered across it. import numpy as np from matplotlib import offsetbox from sklearn.preprocessing import MinMaxScaler def plot_embedding(X, title): _, ax = plt.subplots() X = MinMaxScaler().fit_transform(X) for digit in digits.target_names: ax.scatter( *X[y == digit].T, marker=f"${digit}$", s=60, color=plt.cm.Dark2(digit), alpha=0.425, zorder=2, ) shown_images = np.array([[1.0, 1.0]]) # just something big for i in range(X.shape[0]): # plot every digit on the embedding # show an annotation box for a group of digits dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.concatenate([shown_images, [X[i]]], axis=0) imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i] ) imagebox.set(zorder=1) ax.add_artist(imagebox) ax.set_title(title) ax.axis("off") # %% # Embedding techniques comparison # ------------------------------- # # Below, we compare different techniques. However, there are a couple of things # to note: # # * the :class:`~sklearn.ensemble.RandomTreesEmbedding` is not # technically a manifold embedding method, as it learn a high-dimensional # representation on which we apply a dimensionality reduction method. # However, it is often useful to cast a dataset into a representation in # which the classes are linearly-separable. # * the :class:`~sklearn.discriminant_analysis.LinearDiscriminantAnalysis` and # the :class:`~sklearn.neighbors.NeighborhoodComponentsAnalysis`, are supervised # dimensionality reduction method, i.e. they make use of the provided labels, # contrary to other methods. # * the :class:`~sklearn.manifold.TSNE` is initialized with the embedding that is # generated by PCA in this example. It ensures global stability of the embedding, # i.e., the embedding does not depend on random initialization. from sklearn.decomposition import TruncatedSVD from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomTreesEmbedding from sklearn.manifold import ( MDS, TSNE, Isomap, LocallyLinearEmbedding, SpectralEmbedding, ) from sklearn.neighbors import NeighborhoodComponentsAnalysis from sklearn.pipeline import make_pipeline from sklearn.random_projection import SparseRandomProjection embeddings = { "Random projection embedding": SparseRandomProjection( n_components=2, random_state=42 ), "Truncated SVD embedding": TruncatedSVD(n_components=2), "Linear Discriminant Analysis embedding": LinearDiscriminantAnalysis( n_components=2 ), "Isomap embedding": Isomap(n_neighbors=n_neighbors, n_components=2), "Standard LLE embedding": LocallyLinearEmbedding( n_neighbors=n_neighbors, n_components=2, method="standard" ), "Modified LLE embedding": LocallyLinearEmbedding( n_neighbors=n_neighbors, n_components=2, method="modified" ), "Hessian LLE embedding": LocallyLinearEmbedding( n_neighbors=n_neighbors, n_components=2, method="hessian" ), "LTSA LLE embedding": LocallyLinearEmbedding( n_neighbors=n_neighbors, n_components=2, method="ltsa" ), "MDS embedding": MDS(n_components=2, n_init=1, max_iter=120, n_jobs=2), "Random Trees embedding": make_pipeline( RandomTreesEmbedding(n_estimators=200, max_depth=5, random_state=0), TruncatedSVD(n_components=2), ), "Spectral embedding": SpectralEmbedding( n_components=2, random_state=0, eigen_solver="arpack" ), "t-SNE embedding": TSNE( n_components=2, max_iter=500, n_iter_without_progress=150, n_jobs=2, random_state=0, ), "NCA embedding": NeighborhoodComponentsAnalysis( n_components=2, init="pca", random_state=0 ), } # %% # Once we declared all the methods of interest, we can run and perform the projection # of the original data. We will store the projected data as well as the computational # time needed to perform each projection. from time import time projections, timing = {}, {} for name, transformer in embeddings.items(): if name.startswith("Linear Discriminant Analysis"): data = X.copy() data.flat[:: X.shape[1] + 1] += 0.01 # Make X invertible else: data = X print(f"Computing {name}...") start_time = time() projections[name] = transformer.fit_transform(data, y) timing[name] = time() - start_time # %% # Finally, we can plot the resulting projection given by each method. for name in timing: title = f"{name} (time {timing[name]:.3f}s)" plot_embedding(projections[name], title) plt.show()