""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.inspection import DecisionBoundaryDisplay from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std clf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y) ax = plt.gca() DecisionBoundaryDisplay.from_estimator( clf, X, cmap=plt.cm.Paired, ax=ax, response_method="predict", xlabel=iris.feature_names[0], ylabel=iris.feature_names[1], ) plt.axis("tight") # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter( X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], edgecolor="black", s=20, ) plt.title("Decision surface of multi-class SGD") plt.axis("tight") # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()