""" =========================================== Robust linear model estimation using RANSAC =========================================== In this example, we see how to robustly fit a linear model to faulty data using the :ref:`RANSAC ` algorithm. The ordinary linear regressor is sensitive to outliers, and the fitted line can easily be skewed away from the true underlying relationship of data. The RANSAC regressor automatically splits the data into inliers and outliers, and the fitted line is determined only by the identified inliers. """ import numpy as np from matplotlib import pyplot as plt from sklearn import datasets, linear_model n_samples = 1000 n_outliers = 50 X, y, coef = datasets.make_regression( n_samples=n_samples, n_features=1, n_informative=1, noise=10, coef=True, random_state=0, ) # Add outlier data np.random.seed(0) X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1)) y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers) # Fit line using all data lr = linear_model.LinearRegression() lr.fit(X, y) # Robustly fit linear model with RANSAC algorithm ransac = linear_model.RANSACRegressor() ransac.fit(X, y) inlier_mask = ransac.inlier_mask_ outlier_mask = np.logical_not(inlier_mask) # Predict data of estimated models line_X = np.arange(X.min(), X.max())[:, np.newaxis] line_y = lr.predict(line_X) line_y_ransac = ransac.predict(line_X) # Compare estimated coefficients print("Estimated coefficients (true, linear regression, RANSAC):") print(coef, lr.coef_, ransac.estimator_.coef_) lw = 2 plt.scatter( X[inlier_mask], y[inlier_mask], color="yellowgreen", marker=".", label="Inliers" ) plt.scatter( X[outlier_mask], y[outlier_mask], color="gold", marker=".", label="Outliers" ) plt.plot(line_X, line_y, color="navy", linewidth=lw, label="Linear regressor") plt.plot( line_X, line_y_ransac, color="cornflowerblue", linewidth=lw, label="RANSAC regressor", ) plt.legend(loc="lower right") plt.xlabel("Input") plt.ylabel("Response") plt.show()