""" =============================================================== Factor Analysis (with rotation) to visualize patterns =============================================================== Investigating the Iris dataset, we see that sepal length, petal length and petal width are highly correlated. Sepal width is less redundant. Matrix decomposition techniques can uncover these latent patterns. Applying rotations to the resulting components does not inherently improve the predictive value of the derived latent space, but can help visualise their structure; here, for example, the varimax rotation, which is found by maximizing the squared variances of the weights, finds a structure where the second component only loads positively on sepal width. """ # Authors: Jona Sassenhagen # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_iris from sklearn.decomposition import PCA, FactorAnalysis from sklearn.preprocessing import StandardScaler # %% # Load Iris data data = load_iris() X = StandardScaler().fit_transform(data["data"]) feature_names = data["feature_names"] # %% # Plot covariance of Iris features ax = plt.axes() im = ax.imshow(np.corrcoef(X.T), cmap="RdBu_r", vmin=-1, vmax=1) ax.set_xticks([0, 1, 2, 3]) ax.set_xticklabels(list(feature_names), rotation=90) ax.set_yticks([0, 1, 2, 3]) ax.set_yticklabels(list(feature_names)) plt.colorbar(im).ax.set_ylabel("$r$", rotation=0) ax.set_title("Iris feature correlation matrix") plt.tight_layout() # %% # Run factor analysis with Varimax rotation n_comps = 2 methods = [ ("PCA", PCA()), ("Unrotated FA", FactorAnalysis()), ("Varimax FA", FactorAnalysis(rotation="varimax")), ] fig, axes = plt.subplots(ncols=len(methods), figsize=(10, 8), sharey=True) for ax, (method, fa) in zip(axes, methods): fa.set_params(n_components=n_comps) fa.fit(X) components = fa.components_.T print("\n\n %s :\n" % method) print(components) vmax = np.abs(components).max() ax.imshow(components, cmap="RdBu_r", vmax=vmax, vmin=-vmax) ax.set_yticks(np.arange(len(feature_names))) ax.set_yticklabels(feature_names) ax.set_title(str(method)) ax.set_xticks([0, 1]) ax.set_xticklabels(["Comp. 1", "Comp. 2"]) fig.suptitle("Factors") plt.tight_layout() plt.show()