# ruff: noqa """ ======================================= Release Highlights for scikit-learn 1.4 ======================================= .. currentmodule:: sklearn We are pleased to announce the release of scikit-learn 1.4! Many bug fixes and improvements were added, as well as some new key features. We detail below a few of the major features of this release. **For an exhaustive list of all the changes**, please refer to the :ref:`release notes `. To install the latest version (with pip):: pip install --upgrade scikit-learn or with conda:: conda install -c conda-forge scikit-learn """ # %% # HistGradientBoosting Natively Supports Categorical DTypes in DataFrames # ----------------------------------------------------------------------- # :class:`ensemble.HistGradientBoostingClassifier` and # :class:`ensemble.HistGradientBoostingRegressor` now directly supports dataframes with # categorical features. Here we have a dataset with a mixture of # categorical and numerical features: from sklearn.datasets import fetch_openml X_adult, y_adult = fetch_openml("adult", version=2, return_X_y=True) # Remove redundant and non-feature columns X_adult = X_adult.drop(["education-num", "fnlwgt"], axis="columns") X_adult.dtypes # %% # By setting `categorical_features="from_dtype"`, the gradient boosting classifier # treats the columns with categorical dtypes as categorical features in the # algorithm: from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score X_train, X_test, y_train, y_test = train_test_split(X_adult, y_adult, random_state=0) hist = HistGradientBoostingClassifier(categorical_features="from_dtype") hist.fit(X_train, y_train) y_decision = hist.decision_function(X_test) print(f"ROC AUC score is {roc_auc_score(y_test, y_decision)}") # %% # Polars output in `set_output` # ----------------------------- # scikit-learn's transformers now support polars output with the `set_output` API. import polars as pl from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer df = pl.DataFrame( {"height": [120, 140, 150, 110, 100], "pet": ["dog", "cat", "dog", "cat", "cat"]} ) preprocessor = ColumnTransformer( [ ("numerical", StandardScaler(), ["height"]), ("categorical", OneHotEncoder(sparse_output=False), ["pet"]), ], verbose_feature_names_out=False, ) preprocessor.set_output(transform="polars") df_out = preprocessor.fit_transform(df) df_out # %% print(f"Output type: {type(df_out)}") # %% # Missing value support for Random Forest # --------------------------------------- # The classes :class:`ensemble.RandomForestClassifier` and # :class:`ensemble.RandomForestRegressor` now support missing values. When training # every individual tree, the splitter evaluates each potential threshold with the # missing values going to the left and right nodes. More details in the # :ref:`User Guide `. import numpy as np from sklearn.ensemble import RandomForestClassifier X = np.array([0, 1, 6, np.nan]).reshape(-1, 1) y = [0, 0, 1, 1] forest = RandomForestClassifier(random_state=0).fit(X, y) forest.predict(X) # %% # Add support for monotonic constraints in tree-based models # ---------------------------------------------------------- # While we added support for monotonic constraints in histogram-based gradient boosting # in scikit-learn 0.23, we now support this feature for all other tree-based models as # trees, random forests, extra-trees, and exact gradient boosting. Here, we show this # feature for random forest on a regression problem. import matplotlib.pyplot as plt from sklearn.inspection import PartialDependenceDisplay from sklearn.ensemble import RandomForestRegressor n_samples = 500 rng = np.random.RandomState(0) X = rng.randn(n_samples, 2) noise = rng.normal(loc=0.0, scale=0.01, size=n_samples) y = 5 * X[:, 0] + np.sin(10 * np.pi * X[:, 0]) - noise rf_no_cst = RandomForestRegressor().fit(X, y) rf_cst = RandomForestRegressor(monotonic_cst=[1, 0]).fit(X, y) disp = PartialDependenceDisplay.from_estimator( rf_no_cst, X, features=[0], feature_names=["feature 0"], line_kw={"linewidth": 4, "label": "unconstrained", "color": "tab:blue"}, ) PartialDependenceDisplay.from_estimator( rf_cst, X, features=[0], line_kw={"linewidth": 4, "label": "constrained", "color": "tab:orange"}, ax=disp.axes_, ) disp.axes_[0, 0].plot( X[:, 0], y, "o", alpha=0.5, zorder=-1, label="samples", color="tab:green" ) disp.axes_[0, 0].set_ylim(-3, 3) disp.axes_[0, 0].set_xlim(-1, 1) disp.axes_[0, 0].legend() plt.show() # %% # Enriched estimator displays # --------------------------- # Estimators displays have been enriched: if we look at `forest`, defined above: forest # %% # One can access the documentation of the estimator by clicking on the icon "?" on # the top right corner of the diagram. # # In addition, the display changes color, from orange to blue, when the estimator is # fitted. You can also get this information by hovering on the icon "i". from sklearn.base import clone clone(forest) # the clone is not fitted # %% # Metadata Routing Support # ------------------------ # Many meta-estimators and cross-validation routines now support metadata # routing, which are listed in the :ref:`user guide # `. For instance, this is how you can do a nested # cross-validation with sample weights and :class:`~model_selection.GroupKFold`: import sklearn from sklearn.metrics import get_scorer from sklearn.datasets import make_regression from sklearn.linear_model import Lasso from sklearn.model_selection import GridSearchCV, cross_validate, GroupKFold # For now by default metadata routing is disabled, and need to be explicitly # enabled. sklearn.set_config(enable_metadata_routing=True) n_samples = 100 X, y = make_regression(n_samples=n_samples, n_features=5, noise=0.5) rng = np.random.RandomState(7) groups = rng.randint(0, 10, size=n_samples) sample_weights = rng.rand(n_samples) estimator = Lasso().set_fit_request(sample_weight=True) hyperparameter_grid = {"alpha": [0.1, 0.5, 1.0, 2.0]} scoring_inner_cv = get_scorer("neg_mean_squared_error").set_score_request( sample_weight=True ) inner_cv = GroupKFold(n_splits=5) grid_search = GridSearchCV( estimator=estimator, param_grid=hyperparameter_grid, cv=inner_cv, scoring=scoring_inner_cv, ) outer_cv = GroupKFold(n_splits=5) scorers = { "mse": get_scorer("neg_mean_squared_error").set_score_request(sample_weight=True) } results = cross_validate( grid_search, X, y, cv=outer_cv, scoring=scorers, return_estimator=True, params={"sample_weight": sample_weights, "groups": groups}, ) print("cv error on test sets:", results["test_mse"]) # Setting the flag to the default `False` to avoid interference with other # scripts. sklearn.set_config(enable_metadata_routing=False) # %% # Improved memory and runtime efficiency for PCA on sparse data # ------------------------------------------------------------- # PCA is now able to handle sparse matrices natively for the `arpack` # solver by levaraging `scipy.sparse.linalg.LinearOperator` to avoid # materializing large sparse matrices when performing the # eigenvalue decomposition of the data set covariance matrix. # from sklearn.decomposition import PCA import scipy.sparse as sp from time import time X_sparse = sp.random(m=1000, n=1000, random_state=0) X_dense = X_sparse.toarray() t0 = time() PCA(n_components=10, svd_solver="arpack").fit(X_sparse) time_sparse = time() - t0 t0 = time() PCA(n_components=10, svd_solver="arpack").fit(X_dense) time_dense = time() - t0 print(f"Speedup: {time_dense / time_sparse:.1f}x")