""" ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ # Author: Alexandre Gramfort # Fabian Pedregosa # # License: BSD 3 clause (C) INRIA # %% # Generate sample data # -------------------- import matplotlib.pyplot as plt import numpy as np from sklearn import neighbors np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) # %% # Fit regression model # -------------------- n_neighbors = 5 for i, weights in enumerate(["uniform", "distance"]): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(T) plt.subplot(2, 1, i + 1) plt.scatter(X, y, color="darkorange", label="data") plt.plot(T, y_, color="navy", label="prediction") plt.axis("tight") plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.tight_layout() plt.show()