""" ================================================= Plot individual and voting regression predictions ================================================= .. currentmodule:: sklearn A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it averages the individual predictions to form a final prediction. We will use three different regressors to predict the data: :class:`~ensemble.GradientBoostingRegressor`, :class:`~ensemble.RandomForestRegressor`, and :class:`~linear_model.LinearRegression`). Then the above 3 regressors will be used for the :class:`~ensemble.VotingRegressor`. Finally, we will plot the predictions made by all models for comparison. We will work with the diabetes dataset which consists of 10 features collected from a cohort of diabetes patients. The target is a quantitative measure of disease progression one year after baseline. """ import matplotlib.pyplot as plt from sklearn.datasets import load_diabetes from sklearn.ensemble import ( GradientBoostingRegressor, RandomForestRegressor, VotingRegressor, ) from sklearn.linear_model import LinearRegression # %% # Training classifiers # -------------------------------- # # First, we will load the diabetes dataset and initiate a gradient boosting # regressor, a random forest regressor and a linear regression. Next, we will # use the 3 regressors to build the voting regressor: X, y = load_diabetes(return_X_y=True) # Train classifiers reg1 = GradientBoostingRegressor(random_state=1) reg2 = RandomForestRegressor(random_state=1) reg3 = LinearRegression() reg1.fit(X, y) reg2.fit(X, y) reg3.fit(X, y) ereg = VotingRegressor([("gb", reg1), ("rf", reg2), ("lr", reg3)]) ereg.fit(X, y) # %% # Making predictions # -------------------------------- # # Now we will use each of the regressors to make the 20 first predictions. xt = X[:20] pred1 = reg1.predict(xt) pred2 = reg2.predict(xt) pred3 = reg3.predict(xt) pred4 = ereg.predict(xt) # %% # Plot the results # -------------------------------- # # Finally, we will visualize the 20 predictions. The red stars show the average # prediction made by :class:`~ensemble.VotingRegressor`. plt.figure() plt.plot(pred1, "gd", label="GradientBoostingRegressor") plt.plot(pred2, "b^", label="RandomForestRegressor") plt.plot(pred3, "ys", label="LinearRegression") plt.plot(pred4, "r*", ms=10, label="VotingRegressor") plt.tick_params(axis="x", which="both", bottom=False, top=False, labelbottom=False) plt.ylabel("predicted") plt.xlabel("training samples") plt.legend(loc="best") plt.title("Regressor predictions and their average") plt.show()