FRET Artifact Evaluation

This document provides instructions for reproducing the experimental results
from the paper “Dynamic Fuzzing-Based Whole-System Timing Analysis”.

Description

Expected Time: 5 days (configurable)

Hardware Requirements: 64 cores, 256-512GB RAM (recommended), mini-
mum 8 cores, 32-64GB RAM

Software Requirements: Linux x86_ 64, Nix package manager

Claims Supported by Artifact

If you run the benchmarks as described below, it will produce the following files,
which correspond to figures in the paper (link to the paper).

1. Figure 3: (Files: sql_waters_seq_bytes, sql_polycopter_seq_dataflow_full)
This scenario is about mutating just input values. While multiple tech-
niques find the worst case for both scenarios, FRET is the fastest to reach
the maximum, particular in the second case. FRET also achieves the
highest median result.

2. Figure 4: (Files: sql_waters_seq_int,sql_release_seq_int) This
scenario is about mutating just interrupt times. While multiple techniques
find the worst case for the second scenario, FRET achieves the highest
response time on the first one.

3. Figure 5: (Files: sql_release_seq_full, sql_waters_seq_full) This
scenario is about mutating both kinds of inputs simultaniously. Only
FRET achieves the worst possible time when looking at the median results
of the first scenario. For the second one, FRET alone reaches the highest
response times. Thid demonstrates, that FRET’s advantage over other
techniques is particularly pronounced when both kinds of inputs are
compared.

4. Figure 6: (File: all_tasks) This is a comparison of FRET’s advantage
over the best other technqiues on each task of the waters scenario. FRET
ends up above every other technique on each task, validating the comparison
in fig. 5 b).

Getting Started
Option 1: VirtualBox Images (Recommended)

Download our ready-made VM image from https://sys-sideshow.cs.tu-dortmund
.de/downloads/rtss25/fret.ova

https://sys-sideshow.cs.tu-dortmund.de/downloads/rtss25/paper.pdf
https://sys-sideshow.cs.tu-dortmund.de/downloads/rtss25/paper.pdf
https://sys-sideshow.cs.tu-dortmund.de/downloads/rtss25/fret.ova
https://sys-sideshow.cs.tu-dortmund.de/downloads/rtss25/fret.ova

e VM Configuration: Allocate as much RAM as possible (minimum
32GB, recommended 512GB)

e« CPU Allocation: Oune core per 4-8GB of RAM (recommended 64 cores,
256-512GB RAM)

o Disk Space: At least 100GB free space for results
o Login: Username: osboxes.org, Password: osboxes.org

¢ Open a terminal in ~/FRET
— Load the environemnt using direnv relaod or nix develop
¢ Ensure you have the right version: git checkout RTSS25-AE &&
git submodule update --init

Option 2: Setup From Scratch
Prerequisites: Linux x86_ 64 system with Nix package manager installed
1. Clone the repository:

git clone https://git.cs.tu-dortmund.de/SYS-0SS/FRET
cd FRET

git checkout RTSS25-AE

git submodule update --init

2. Install Nix (if not already installed):

curl -L https://nixos.org/nix/install | sh
source ~/.nix-profile/etc/profile.d/nix.sh

3. Enter the development environment:

nix develop # or niz-shell for older Niz versions

Option 3: Docker Setup
1. Clone the repository:

git clone --recursive https://git.cs.tu-dortmund.de/SYS-0SS/FRET
cd FRET

git checkout RTSS25-AE

git submodule update --init

2. See Docker/README.md

System Requirements
Minimum Configuration

o CPU: 8 cores (Intel/AMD x86_64)

Docker/README.md

¢ Memory: 32GB RAM
e Storage: 100GB free disk space
e OS: Linux distribution with Nix support

Recommended Configuration

e CPU: 64 cores with hyperthreading
¢ Memory: 256-512GB RAM (allows parallel execution of all configurations)
e Time for a full evaluation: 5 days

Building and Installation
Initial Setup
./one_time_setup.sh

This script builds the default configuration of FRET, along with target systems
and additional tools for benchmarking. The script will: - Build QEMU with
FRET patches - Compile target FreeRTOS applications - Build the FRET fuzzer
and all dependencies - Set up the evaluation environment

Verification of Installation
After setup completes, verify the installation:

Check FRET binary
cd LibAFL/fuzzers/FRET/benchmark
target/fret --help

Check target systems
1s build

Step-by-Step Instructions (Optional)
See README.md for reference.

Manual Usage (Optional)
You can start using FRET manually. It requires the following inputs:

e -k: a FreeRTOS Kernel image

e -c: a csv file with configuration parameters per target kernel
(LibAFL/fuzzers/FRET /benhcmark/target_symbols.csv)

cd LibAFL/fuzzers/FRET
Help for arguments
cargo run -- —-help

Exzample

README.md

mkdir -p $TMPDIR

export DUMP=$(mktemp -d)

dd if=/dev/random of=$DUMP/input bs=8K count=1

fuzz for 10 seconds

cargo run -- -k benchmark/build/waters_seq_full.elf \
-c benchmark/target_symbols.csv \
-n $DUMP/output -ta fuzz -t 10 --seed 123456

Produce a trace for the worst case found

cargo run -- -k benchmark/build/waters_seq_full.elf \
-c benchmark/target_symbols.csv \
-n $DUMP/show -trg showmap -i $DUMP/output.case

plot the result

gantt_driver $DUMP/show.trace.ron

view the gantt chart

open $DUMP/show_job.html

Run the Evaluation

Feel free to read the script
./run_eval.sh

This script will reproduce all figures 3-6 in the eval section of the paper. You can
edit the environemnt variables at the top to change the following parameters:

e CORES: The number of (physical) cores of the VM / fuzzers running in
parallel. You will need about 8GB of RAM per fuzzer.

o RUNTIME: Time spent on each fuzzing run in seconds (the default is 24h).
8h should be sufficient to see results similar to the paper.

e TARGET_REPLICA_NUMBER: The number of replicas for each regular
configuration.

e RANDOM_REPLICA_NUMBER: The number of replicas for configurations with
random fuzzing. These usually deviate very little from each other and
thus can be reduced without affecting the results.

e MULTIJOB_REPLICA_NUMBER: The number of replicas for the figure that
compares all techniques for each task of a system. This evluation consists
of many configurations, so you can reduce this numer to save a lot of time.

For complete reproduction of paper results you can use the following configuration,
which takes about 5 days on a 64 core machine:

in run_eval.sh

export CORES=64 # Number of phystical cores
export RUNTIME=86400 # 2/ hours in seconds
export TARGET_REPLICA_NUMBER=12

export RANDOM_REPLICA_NUMBER=3
export MULTIJOB_REPLICA_NUMBER=3

Results

All results can be found in LibAFL/fuzzers/FRET/benchmark inside a directory
eval_xx-xx-xx. The content should be the following:

e Plots inside the top-level of the directory. You can compare them to the

paper according to the hints under “Claims Supported by Artifact” above.

e A directory timedump, which contains subdirectories for each fuzzer.
— Insude you find files for configuration with different seeds.

— .time contain response times of each execution.
— .case contains the worst case found by the fuzzer.
— .trace.ron contains tracing data of the worst case. Such data can

be plotted into agantt chart using the tool gantt_driver

Please note that fuzzing is a stochastic process and therefore, some of the results
may exhibit random variation from the figures in the paper.

An archive of our results is also provided under https://sys-sideshow.cs.tu-
dortmund.de/downloads/rtss25 /results.zip.

Troubleshooting
Common Issues
Out of Memory Errors

¢ Reduce CORES parameter to match available RAM (up to 8GB per core)
¢ Consider using fewer relicas per configuration

Build Failures

Clean and rebuild
cd LibAFL/fuzzers/FRET
cargo clean

Missing Dependencies

Ensure Nixz environment is active
nix develop

Or for older Nixz versions
nix-shell

https://sys-sideshow.cs.tu-dortmund.de/downloads/rtss25/results.zip
https://sys-sideshow.cs.tu-dortmund.de/downloads/rtss25/results.zip

Incomplete Results

Check that snakemake completed without errors

Verify all target binaries were built successfully

Ensure sufficient disk space (100GB+)

If plots appear incomplete remove bench.sqlie from the benchmark di-
rectory.

If all else fails: snakemake —-c1 full_clean

Artifact Structure

Directory Layout

FRET/

+-- LibAFL/fuzzers/FRET/ # Main FRET fuzzer implementation

| +-- src/ # Source code

| +-- benchmark/ # Evaluation framework

+-- FreeRT0S/FreeRT0S/Demo/CORTEX_M3_MPS2_QEMU_GCC # Our FreeRTOS Demos
+-- one_time_setup.sh # Initial setup script

+-- run_eval.sh # Main evaluation script

+-- AE.md # This document

Key Components

e FRET Fuzzer: Core fuzzing engine with RTOS-aware features
e Target Applications: Real-world FreeRTOS applications for testing
¢ Evaluation Framework: Snakemake-based automation for reproducible

experiments

Customization

Adding New Target Applications

1. Add target configuration to benchmark/target_symbols.csv
2. Update benchmark/Snakefile with new target rules

Further information

Please consult README.md and LibAFL/fuzzers/FRET/ARCH.md

Contact Information

For questions about the artifact or issues during evaluation, please contact: -
alwin.berger@tu-dortmund.de

License

This artifact is provided under Apache License Version 2.0.

README.md
LibAFL/fuzzers/FRET/ARCH.md

	FRET Artifact Evaluation
	Description
	Claims Supported by Artifact

	Getting Started
	Option 1: VirtualBox Images (Recommended)
	Option 2: Setup From Scratch
	Option 3: Docker Setup
	System Requirements

	Building and Installation
	Initial Setup
	Verification of Installation

	Step-by-Step Instructions (Optional)
	Manual Usage (Optional)

	Run the Evaluation
	Results
	Troubleshooting
	Common Issues

	Artifact Structure
	Directory Layout
	Key Components

	Customization
	Adding New Target Applications

	Further information
	Contact Information
	License

